Site de vulgarisation scientifique d'Etienne Klein
"Il me plaît de penser que la physique est une sorte d’alpinisme intellectuel consistant à grimper jusqu’à des hauteurs himalayennes où le logos est rare et la vérité mutique."
photo E. Klein
signature E. Klein

Comment la physique quantique est-elle née ? 1/6

Comment la physique quantique est-elle née ? 1/6

2:26 Anecdote (Laurent Schwartz)
3:38 Le problème du corps noir
5:53 Max Planck : sa constante, son refus de l’interprétation de l’entropie par Boltzmann
8:21 Problème de la flèche du temps : irréversibilité des phénomènes
10:40 Qu’est-ce qu’un corps noir ? Interaction lumière – matière
12:12 Analogie : équipartition de l’énergie dans un gaz, remarque sur le rôle des collisions
17:26 Dépendance en température du spectre du corps noir
19:41 Historique du corps noir (Kirchhoff, Stefan, Wien, Rayleigh, Jeans)
23:02 Catastrophe ultraviolette ; origine de l’expression
25:17 Position de Planck dans le débat énergétistes – atomistes
26:59 Acte de désespoir de Planck : introduction d’une nouvelle constante, quantification de l’énergie E=h*nu (1900)
30:56 Exemple de corps noir : le Soleil
33:02 Efficacité de la formule de Planck, rayonnement cosmologique
35:10 Explication de la formule de Planck, modes dans une cavité, analogie avec un piano ; quanta d’énergie
40:48 Conséquences de l’hypothèse des quanta, résolution de la catastrophe ultraviolette
44:26 Einstein, l’inventeur des quanta

Share Button

Petit voyage dans le monde des quanta

petit_voyage

En 1905 apparaissait une nouvelle physique qui allait révolutionner la façon de décrire la matière et ses interactions : la physique quantique. Avec elle s’ouvraient les portes d’un monde qui n’obéit pas aux lois de la physique classique : l’infi niment petit, avec ses atomes et ses particules. Elle obligea ses pères fondateurs, Einstein, Bohr, Heisenberg et Schrödinger notamment, à rediscuter le déterminisme et les critères de réalité de la physique classique, ainsi que la traditionnelle séparation entre observateur et objet observé. Pour la première fois dans l’histoire des sciences, une discipline exigeait même que soit mis en œuvre un travail d’interprétation afi n d’être comprise et appliquée : quelle sorte de réalité représente le formalisme quantique ? Aujourd’hui, quel crédit convient-il d’accorder aux diverses interprétations proposées depuis les années 1920 ? La physique quantique ne laisse pas d’intriguer, de fasciner, d’exaspérer parfois. Elle demeure pourtant méconnue, victime de stéréotypes : on l’invoque pour cautionner tel phénomène étrange, mais on néglige d’en décrire les principes fondamentaux. Quels sont ces principes qui trouvent des applications toujours plus fascinantes, du laser à la cryptographie quantique, en passant par la téléportation ? D’où provient cette incroyable efficacité de la physique quantique ?

Share Button

Le facteur temps ne sonne jamais deux fois

facteur_temps

Chose déroutante, décidément, que le temps. Nous en parlons comme d’une notion familière, évidente, voire domestique, “gérable”. Nous parlons même d’un “temps réel” pour évoquer l’instantanéité, c’est-à-dire le temps sur lequel nous n’avons aucune prise. Les physiciens, eux, l’ont couplé à l’espace, en ont fait une variable mathématique, abstraite, qu’ils intègrent dans des théories audacieuses, spectaculaires, mais si complexes qu’elles sont difficiles à traduire en langage courant. Certains disent même avoir identifié le moteur du temps. Quant aux philosophes, ils ne cessent depuis plus de deux millénaires de soumettre le temps au questionnement : est-il une sorte d’entité primitive, originaire, qui ne dériverait que d’elle-même ? Ou procéderait-il au contraire d’une ou plusieurs autres entités, plus fondamentales : la relation (de cause à effet, par exemple) ? Le temps s’écoule-t-il de lui-même ou a-t-il besoin des événements qui s’y déroulent pour passer ? S’apparente-t-il au devenir, au changement, au mouvement ? Et au fait, le temps a-t-il eu un commencement ? Aucune discipline ne parvient à épuiser, à elle seule, la question du temps. C’est pourquoi nous avons croisé les regards des philosophes avec ceux des physiciens. Et que se passe-t-il ? Sans aucun doute de belles et troublantes choses…

Share Button

Le pays qu’habitait Albert Einstein

en_cherchant_majorana

Albert Einstein, c’est l’audace intellectuelle alliée à une fraîcheur déconcertante, c’est l’imagination ardente soutenue par une obstination imperturbable. Mais comment approcher une façon de penser et de créer à nulle autre pareille ?
Étienne Klein est parti sur ses traces, il s’est attaché aux époques et aux villes où le destin d’Einstein a basculé : Aarau où, à seize ans, Einstein se demande ce qu’il se passerait s’il chevauchait un rayon de lumière ; Zurich, où il devient ingénieur en 1901 et se passionne pour la physique expérimentale ; Berne où, entre mars et septembre 1905, il publie cinq articles, dont celui sur la relativité restreinte qui révolutionnera les relations de l’espace et du temps, tout en travaillant à l’Office fédéral de la propriété intellectuelle ; Prague où, en 1912, il a l’idée que la lumière est déviée par la gravitation, esquissant ainsi la future théorie de la relativité générale. Puis Bruxelles, Anvers et, enfin, Le Coq-sur-Mer où, en 1933, Einstein se réfugie quelques mois avant de quitter l’Europe pour les États-Unis. Définitivement.
Albert Einstein (1879-1955), c’est une vie d’exils successifs, arrimée à la physique. C’est un art du questionnement fidèle à l’esprit d’enfance. C’est un mystère qu’Étienne Klein côtoie avec autant d’affection que d’admiration.

Share Button

Les articles de l’année 1905

17 mars 1905 : “Sur un point de vue heuristique concernant la production et la transformation de la lumière”
Disponible ici (avec traduction partielle en français) : Article du 17 mars 1905

11 mai 1905 : “Sur le mouvement de particules en suspension dans un fluide au repos impliqué par la théorie cinétique moléculaire de la chaleur”
Article en anglais : Investigations on the theory of the brownian movement

30 juin 1905 : “Sur l’électrodynamique des corps en mouvement”
Article en anglais : On the electrodynamics of moving bodies
Version en français : De l’électrodynamique des corps en mouvement
Traduction de l’allemand vers l’anglais : D.H, Jivesh3141 et l’IP 83.79.31.102
Traduction de l’anglais vers le français : Cantons-de-l’Est et Simon Villeneuve
Texte sous licence CC-BY-SA

27 septembre 1905 : “L’inertie d’un corps dépend-elle de son énergie ?”
Article en anglais : Does the inertia of a body depend upon its energy-content ?
Où l’on apprend que E=mc2…

Share Button

Il était sept fois la révolution

41cHc9K7F0L._SX297_BO1,204,203,200_

Certaines révolutions sont lentes et ne font pas couler de sang. Entre 1925 et 1935, la physique a connu un tel bouleversement : les atomes, ces petits grains de matière découverts quelques années plus tôt, n’obéissaient plus aux lois de la physique classique. Il fallait en inventer de nouvelles, penser autrement la matière. Une décennie d’effervescence créatrice, d’audace, de tourments, une décennie miraculeuse suffit à un petit nombre de physiciens, tous jeunes, pour fonder l’une des plus belles constructions intellectuelles de tous les temps : la physique quantique, celle de l’infiniment petit, sur laquelle s’appuie toujours la physique actuelle. Originaux, déterminés, attachants, pathétiques parfois, ces hommes ont en commun d’avoir été, chacun à sa façon, des génies. Dispersés aux quatre coins de l’Europe, à Cambridge, Copenhague, Vienne, Göttingen, Zurich ou Rome, ils se rencontraient régulièrement et s’écrivaient souvent. Leurs travaux se faisaient écho, suscitant l’admiration des uns, la critique des autres, jusqu’à ce qu’ils constituent un édifice formel cohérent. Ce livre rend hommage à quelques-uns de ces hommes remarquables : George Gamow, Albert Einstein, Paul Dirac, Ettore Majorana, Wolfgang Pauli, Paul Ehrenfest et Erwin Schrödinger.

Share Button

Discours sur l’origine de l’Univers

discours_origine_univers

D’où vient l’univers ? Et d’où vient qu’il y a un univers ? Irrépressiblement, ces questions se posent à nous. Et dès qu’un discours prétend nous éclairer, nous tendons l’oreille, avides d’entendre l’écho du tout premier signal : les accélérateurs de particules vont bientôt nous révéler l’origine de l’univers en produisant des « big bang sous terre » ; les données recueillies par le satellite Planck nous dévoiler le « visage de Dieu » ; certains disent même qu’en vertu de la loi de la gravitation l’univers a pu se créer de lui-même, à partir de rien… Le grand dévoilement ne serait donc devenu qu’une affaire d’ultimes petits pas ? Rien n’est moins sûr… Car de quoi parle la physique quand elle parle d’« origine » ? Qu’est-ce que les théories actuelles sont réellement en mesure de nous révéler ? À bien les examiner, les perspectives que nous offre la cosmologie contemporaine sont plus vertigineuses encore que tout ce que nous avons imaginé : l’univers a-t-il jamais commencé ?

Share Button

Les Tactiques de Chronos

41cHc9K7F0L._SX297_BO1,204,203,200_

Le temps est une “chose” introuvable dont l’existence ne fait aucun doute. Une “chose” dont tout le monde parle mais que personne n’a jamais vue. Nous voyons, entendons, touchons, goûtons dans le temps, mais non le temps lui-même. Contre toute attente, Chronos est un planqué, un caméléon qu’il faut débusquer sous nos habitudes de langage et de perception. Pour le déjouer, il va falloir l’effeuiller peu à peu, le déshabiller, le distinguer de ses effets les plus sensibles : la durée, la mémoire, le mouvement, le devenir, la vitesse, la répétition… Parce que les horloges ne mesurent pas forcément du temps. Parce que le temps est toujours là alors qu’on dit qu’il s’écoule. Et qu’il existe indépendamment de ce qui survient, se transforme, vieillit et meurt. Aujourd’hui, le regard le plus audacieux et le plus déconcertant sur le temps, c’est la physique qui le porte. De Galilée à Einstein, puis de l’antimatière aux supercordes, elle n’a cessé d’approfondir la question jusqu’à ouvrir des perspectives qui donnent le vertige : le temps a-t-il précédé l’Univers ? Comment s’est-il mis en route ? Pourrait-il inverser son cours ? l’interrompre puis le reprendre ? Existerait-il plusieurs temps en même temps ? Au bout du compte, le temps pourrait ne plus du tout se ressembler.

Share Button

Wolfgang Pauli (1900 – 1958)


Schrodinger

Dans la discussion
Tout son corps se balance.
Quand il défend une thèse
Jamais la vibration ne s’arrête.
Il développe des théories éblouissantes
Tout en se rongeant les ongles.

Poème écrit par George Gamow à propos de Pauli


Formation

Wolfgang Pauli est né à Vienne en 1900. A cette époque, c’est une ville fourmillante d’intellectuels, ce qui est accentué par le milieu très intellectuel que forme et fréquente sa famille.

A l’école, c’est un très bon élève, qui est (déjà) farceur et donne des surnoms à ses professeurs pour amuser ses camarades. Il commence très tôt à lire de manière autonome des livres de physique, ce qui l’amène à publier des articles originaux sur la relativité générale d’Einstein dès 18 ans. Ces articles seront suivis d’une interprétation physique de la relativité générale et du formalisme mathématique associé : ce texte est salué par Einstein lui-même.

Il échappe à la mobilisation de la première Guerre Mondiale « grâce » à une faiblesse cardiaque. Il part donc faire ses études à Munich en 1918, avec pour professeur Sommerfeld. Toujours élève brillant, il préfère potasser ses livres de physique toute la nuit et ne vient guère au cours du matin. Parallèlement à ses cours, il fait de la recherche, où il se montre très productif et utile.


Intérêt pour la physique et premières découvertes

Il rencontre Bohr et s’allie très rapidement avec lui pour interpréter les spectres des atomes. En effet, lorsqu’un atome est excité (si on le chauffe par exemple), il émet une lumière composée de différentes fréquences bien définies, ce qui constitue des « raies » lumineuses nettement séparées les unes des autres. Le problème que les physiciens de l’époque n’arrivent pas à expliquer avc la physique classique est que le nombre de raies théoriques et constatées par l’expérience ne coïncident pas pour tous les atomes !

Pauli résout ce problème d’une manière originale : en effet, les particules sont, à son époque, décrites par trois nombres quantique. Il se rend compte qu’un nouveau nombre quantique est nécessaire pour rendre compte de tous les états. Ce nombre (baptisé plus tard « spin ») prend les valeurs ½ ou -½ et rend compte du sens de rotation de la particule. Il énonce du même coup le principe d’exclusion, qui affirme que deux électrons d’un même atome ne peuvent être dans le même état quantique. Ces avancées fondamentales permettent du même coup de comprendre le remplissage progressif du tableau périodique !

Un physicien au sacré caractère

Après ses découvertes, Pauli acquiert une certaine notoriété. Extrêmement sûr de lui, il devient un personnage majeur dans la validation ou non de nouvelles théories physiques. Il critique et méprise tout ce qui ne semble pas rigoureux, et son ton cassant lui vaut le surnom « le fouet de Dieu » de son ami Ehrenfest

Une anecdote relatant son fameux caractère est que son assistant voulait publier un article avec une erreur de calcul, qui a été remarquée et critiquée sévèrement par Pauli. L’assistant dit alors vouloir « arrêter la physique car [il ne se remettrait] jamais de cette bévue ». Sur quoi Pauli lui répond qu’une seule personne n’a jamais mis d’erreur dans ses articles : lui-même !

Pauli devient professeur, mais est un très mauvais pédagogue. Très fêtard, boit beaucoup. Se marie, qui se révèle très rapidement être un échec. Dans une tentative de remettre de l’ordre dans sa vie, il suit une psychanalyse et analyse ses rêves chez Jung.

Dernières recherches et liens avec la philosophie

Pauli mène des recherches sur la radioactivité. Le grand problème qui agite le monde de la science est d’expliquer la désintégration bêta. Pauli, qui a cette fois encore trouvé une solution originale au problème, rend à Rome en 1931 pour expliquer à Pauli sa théorie. Selon lui, une nouvelle particule neutre (qu’il baptise neutrino) est émise à chaque fois qu’un atome se désintègre par radioactivité bêta. Ces fameux neutrinos, qui seront effectivement observé 25 ans plus tard, sont la source de nombreux mystères aujourd’hui.

En 1934, il se remarie, et part avec sa femme aux Etats-Unis à cause de la seconde Guerre Mondiale. Il obtient (enfin) le Prix Nobel en 1945, puis il revient à Zurich où il continue à enseigner.

Il reste bon ami d’Einstein, malgré leur divergence de plus en plus importante sur le rôle et l’utilisation de la physique quantique. Déjà adepte de l’interprétation des rêves, il s’intéresse à la philosophie d’une façon presque mystique. Par exemple, il recherche les liens entre la psychologie et l’inconscient, et la science. Il publie même un livre intitulé « L’influence des notions archétypales sur la formation des théories scientifiques ».

Pour approfondir, voir chapitre « Les variations cachées de Wolfgang Pauli », dans Il était sept fois la Révolution

Share Button

Peut-on voyager dans le temps ?

1:16 Que veut dire « voyager dans le temps » ?
5:37 Pourquoi la machine à remonter dans le temps n’existe-t-elle toujours pas ?
7:48 Les voyages dans le temps en science-fiction (Wells, Sprague de Camp, Kuttner et Moore, Grimwood, Benford, Anderson)
15:12 Le LHC peut-il remonter dans le temps ? Non ! L’invariance des lois physiques dans le temps et l’évolution des conditions physiques
21:01 Une remarque : deux temps distincts dans les histoires de voyages dans le temps (Alain)
24:14 Les théories physiques et notre façon de dire le temps
27:01 Découvertes philosophiques négatives dans le cas du temps ; la réversibilité des lois physiques
32:40 Le cours du temps et la flèche du temps
34:02 L’œuvre de Roman Opalka, ou la matérialisation du cours du temps en peinture
37:49 Le débat Newton (Clarke) – Leibniz : substantialisme vs relationnalisme ; son écho aujourd’hui
43:12 La métaphore du fleuve et ses « a priori clandestins »
45:29 La vitesse du temps, une absurdité ! Exemple du paradoxe des jumeaux de Langevin
53:55 L’ordre des phénomènes est-il lié au sujet qui les observe ou aux phénomènes eux-mêmes ? (Kant, Critique de la Raison pure)
57:00 Le principe de causalité et le choix d’un temps linéaire en physique
1:01:12 En relativité restreinte, la simultanéité n’est plus absolue
1:05:18 Le rayonnement cosmique, l’équation de Dirac et la prédiction de l’antimatière
1:11:53 Nous émettons en permanence des antiparticules, preuve que les voyages dans le temps sont impossibles !

Share Button

En cherchant Majorana

en_cherchant_majorana

«Ettore Majorana m’est «tombé dessus» lorsque je commençais mes études de physique. Ce théoricien fulgurant a surgi dans l’Italie des années vingt, au moment où la physique venait d’accomplir sa révolution quantique et de découvrir l’atome. En 1937, il publia même un article prophétique dans lequel il envisage l’existence de particules d’un genre nouveau, qui pourraient résoudre la grande énigme de la matière noire. Ce jeune homme maigre, aux yeux sombres et incandescents, était considéré comme un génie de la trempe de Galilée. Mais de tels dons ont leur contrepoids : Majorana ne savait pas vivre parmi les hommes, et c’est la pente pessimiste et tourmentée de son âme qui finit par l’emporter. A l’âge de trente et un ans, il décida de disparaître et le fit savoir. Une nuit de mars 1938, il embarqua sur un navire qui effectuait la liaison Naples-Palerme et se volatilisa.» Etienne Klein est parti sur les traces de cette comète, à Catane, Rome, Naples et Palerme. Il a rencontré des membres de la famille Majorana, fouillé les archives, analysé l’ouvre, avec le secret espoir que ce scientifique romanesque cesserait enfin de se dérober.

Share Button

Max Planck (1858 – 1947)


Planck


“Une théorie nouvelle ne triomphe jamais. Ce sont ses adversaires qui finissent par mourir.”

“Même la théorie physique la plus parfaite n’est pas en mesure de répondre à une question mal formulée.”

Max Planck



Formation

Max Planck est né à Kiel le 23 avril 1858. Il est né dans une famille intellectuelle certes, mais pas scientifique, puisque son père était professeur de droit à l’université, et ses grands-parents professeurs de théologie ! Il étudie à l’université, où il est tiraillé entre des études de musique et de sciences. Ce sont finalement les mathématiques qui l’emportent sur le piano, et il étudie avec des professeurs tels que Kirchhoff ou Helmholtz. Après ses études, il devient professeur de physique à l’université de Munich.

Recherches et découvertes

Ses premiers travaux (qu’il a réalisés pour sa thèse, en 1878) portaient sur la thermodynamique, ce qui s‘explique par l’influence de son professeur Kirchhoff. Il s’intéresse ensuite à l’électromagnétisme et à la physique statistique. C’est finalement lui qui, en 1900, détermine la répartition spectrale du rayonnement pour les corps noirs. Cette théorie est émise sur l’idée, révolutionnaire à l’époque, que l’énergie ne pouvait prendre que des valeurs discrètes, ou « quanta ». Il recevra le prix Nobel pour cette théorie en 1918.

La seconde Guerre Mondiale, une période difficile…

Pendant la seconde Guerre Mondiale, Planck connaît une période particulièrement difficile, puisqu’il décide de rester en Allemagne en considérant que c’était son devoir. Toutefois, il s’opposait ouvertement au régime Nazi, en particulier la persécution des juifs. En 1944, un de ses fils fut exécuté pour la part qu’il a joué dans un attentat manqué contre Hitler.Les dernières semaines de la guerre furent très difficiles pour lui puisque sa maison fut détruite par les bombardements…
Planck meurt deux ans après la fin de la guerre, en 1947.

Share Button

Les secrets de la matière

secrets_matiere

Des particules élémentaires à l’Univers, du big bang aux accélérateurs de particules, en passant par la radioactivité ou l’énergie atomique, Etienne Klein nous guide dans un fascinant voyage au coeur de la matière. Comment expliquer que des matériaux aussi différents que le fer, l’eau ou l’oxygène soient composés de particules identiques ? Qu’est-ce que la radioactivité ? Quels processus ont généré l’Univers tel que nous le connaissons aujourd’hui ? En répondant à ces questions, l’auteur nous fait comprendre les lois qui s’exercent au sein de l’atome aussi bien que celles qui régissent le mouvement des galaxies.

Share Button

Qu’est-ce que la relativité restreinte ?

0:00 Ambitions d’Einstein en 1902 ; office des brevets à Berne
2:37 La synchronisation des horloges, une priorité nationale
4:10 1905, l’année miraculeuse de la physique
6:16 L’effet photoélectrique ; postulat des quanta de lumière
9:06 Le mouvement brownien ; postulat puis vérification (Perrin, 1906) de l’existence de l’atome
11:20 Peut-on synchroniser des horloges à distance ?
12:25 Théories dominantes au XIXe siècle : la mécanique et l’électromagnétisme ; incompatibilité de ces deux théories : l’éther luminifère
16:59 Principe de relativité : le mouvement (rectiligne uniforme) est comme rien
20:37 Mise à mort de l’éther par Einstein
21:55 Questions posées par Einstein dans l’article de juin 1905
25:10 La relativité restreinte, une théorie universelle de l’espace-temps
26:46 Un observateur en chute libre ne sent pas son poids : le principe d’équivalence
29:23 La fin du temps universel newtonien, exemple des deux lampes
35:28 Tautologie : « vitesse d’écoulement du temps » 
39:39 Autant de temps propres que d’observateurs ; le problème du vocabulaire
42:12 Paradoxe des jumeaux de Langevin
43:50 Lien entre l’inertie et l’énergie d’un corps : E = mc2, la vitesse de la lumière devient une constante universelle de la physique
49:00 Applications de E = mc2
51:05 Implication de l’existence d’une vitesse limite ; l’inertie n’est pas la masse
53:24 Exemple de collision au LHC ; collision particule – antiparticule
56:28 Vraie formule E2 = m2c4 + p2c2 : existence possible de particules sans masse, se déplaçant à la vitesse de la lumière

Share Button