Site de vulgarisation scientifique d'Etienne Klein
"Il me plaît de penser que la physique est une sorte d’alpinisme intellectuel consistant à grimper jusqu’à des hauteurs himalayennes où le logos est rare et la vérité mutique."
photo E. Klein
signature E. Klein

De quoi l’énergie est-elle le nom ?

0:57 Quelques données pour commencer
8:29 La conscience collective face à la transition énergétique
9:45 Définition de l’énergie et contraintes physiques ; polysémie du mot « énergie »
12:55 La loi de conservation de l’énergie, citation de Max Planck
16:20 La naissance du concept d’énergie au XIXe siècle
18:38 Ne pas confondre puissance et énergie !
21:42 Le théorème d’Emmy Noether (1918), dont la conservation de l’énergie est un corollaire
25:08 Qu’est-ce que l’entropie d’un système ?
29:05 Il n’y a pas d’énergie renouvelable, à proprement parler
30:21 On ne peut que transformer ou transférer de l’énergie ; différents types d’énergie
35:01 Notion d’esclave énergétique ; énergie corporelle
41:09 Quelle quantité de matière faut-il avoir pour disposer d’un kilowattheure d’énergie ?
48:57 L’incompatibilité entre nos modes de vie et les ressources énergétiques à l’avenir

Share Button

Peut-on voyager dans le temps ?

1:16 Que veut dire « voyager dans le temps » ?
5:37 Pourquoi la machine à remonter dans le temps n’existe-t-elle toujours pas ?
7:48 Les voyages dans le temps en science-fiction (Wells, Sprague de Camp, Kuttner et Moore, Grimwood, Benford, Anderson)
15:12 Le LHC peut-il remonter dans le temps ? Non ! L’invariance des lois physiques dans le temps et l’évolution des conditions physiques
21:01 Une remarque : deux temps distincts dans les histoires de voyages dans le temps (Alain)
24:14 Les théories physiques et notre façon de dire le temps
27:01 Découvertes philosophiques négatives dans le cas du temps ; la réversibilité des lois physiques
32:40 Le cours du temps et la flèche du temps
34:02 L’œuvre de Roman Opalka, ou la matérialisation du cours du temps en peinture
37:49 Le débat Newton (Clarke) – Leibniz : substantialisme vs relationnalisme ; son écho aujourd’hui
43:12 La métaphore du fleuve et ses « a priori clandestins »
45:29 La vitesse du temps, une absurdité ! Exemple du paradoxe des jumeaux de Langevin
53:55 L’ordre des phénomènes est-il lié au sujet qui les observe ou aux phénomènes eux-mêmes ? (Kant, Critique de la Raison pure)
57:00 Le principe de causalité et le choix d’un temps linéaire en physique
1:01:12 En relativité restreinte, la simultanéité n’est plus absolue
1:05:18 Le rayonnement cosmique, l’équation de Dirac et la prédiction de l’antimatière
1:11:53 Nous émettons en permanence des antiparticules, preuve que les voyages dans le temps sont impossibles !

Share Button

Les secrets de la matière

secrets_matiere

Des particules élémentaires à l’Univers, du big bang aux accélérateurs de particules, en passant par la radioactivité ou l’énergie atomique, Etienne Klein nous guide dans un fascinant voyage au coeur de la matière. Comment expliquer que des matériaux aussi différents que le fer, l’eau ou l’oxygène soient composés de particules identiques ? Qu’est-ce que la radioactivité ? Quels processus ont généré l’Univers tel que nous le connaissons aujourd’hui ? En répondant à ces questions, l’auteur nous fait comprendre les lois qui s’exercent au sein de l’atome aussi bien que celles qui régissent le mouvement des galaxies.

Share Button

Conférences de Martin Heidegger


heidegger

Pour agrémenter cette page consacrée à l’innovation et au progrès, il semble opportun de proposer ici deux résumés des conférences de Martin Heidegger intitulées :

La question de la technique


heidegger

Le texte suivant retrace le cheminement des idées essentielles de la conférence « La question de la technique » de Martin Heidegger, puisée dans « Essais et conférences ».

Dès les premières lignes, Heidegger annonce l’objectif de cette conférence : ouvrir notre être à l’essence de la technique, essence qui n’a en elle-même rien de technique. Dès lors, nous pourrons disposer d’un rapport libre à la technique ; en effet, aujourd’hui, nous sommes aveugles à l’essence de la technique, et cet aveuglement nous prive de liberté.

Qu’est-ce que la technique ? Heidegger en donne une définition : la production de moyens en vue de certaines fins. Mais cette définition, tirée de l’observation, ne renvoie qu’à une conception purement instrumentale de la technique : elle ne donne pas l’essence de la technique, ce qui la caractérise fondamentalement au-delà des considérations matérielles. Pour trouver quelle est cette essence, Heidegger propose de se demander : qu’est-ce que le caractère instrumental lui-même ?

Pour le comprendre, il faut revenir à la notion de cause entendue dans un sens plus large que la simple relation de cause à effet. Ainsi Aristote distinguait quatre types de causes :

  • la cause matérielle : la matière qui sert à la fabrication d’une chose

  • la cause formelle : la définition de la chose à partir de son essence, de sa « forme », et donc en particulier de son aspect, qui permet de la reconnaître (formes géométriques, couleurs, dimensions…)

  • la cause finale : la raison d’être de la chose, en vue de quelle fin on l’a produite

  • et la cause efficiente : ce qui produit la chose, par exemple l’artisan.

Heidegger propose de dépasser ces quatre causes aristotéliciennes en s’interrogeant sur ce qui les unit fondamentalement : qu’est-ce qui les rend si solidaires entre elles, si interdépendantes ? La réponse est qu’elles constituent les différents modes, les différentes déclinaisons d’un même acte qu’Heidegger appelle « l’acte dont on répond ».

Tout cela s’éclaircit avec l’exemple d’une coupe en argent. La coupe est redevable envers l’argent (sa cause matérielle), envers l’aspect qu’a pris l’argent transformé en coupe et non en agrafe ou en anneau (sa cause formelle), envers ce qui la détermine à être une coupe (sa cause finale), et envers l’orfèvre, mais non pas en tant que sa cause efficiente. Ici Heidegger se démarque de la lecture habituelle d’Aristote en ne réduisant pas la cause efficiente à un simple acte de fabrication. En effet, pour Heidegger, l’orfèvre en plus de fabriquer la coupe rassemble les quatre modes de l’« acte dont on répond », qui correspondent aux quatre causes d’Aristote et qui entrent en jeu dans la production de la coupe. Cet « acte dont on répond » est donc ce qui conduit quelque chose à passer du non-être à l’être.

En résumé : l’apparition d’une chose dans le monde dépend de la synthèse des quatre causes d’Aristote, synthèse opérée par celui ou celle qui produit et qui constitue pour la chose l’acte dont elle répond, à qui elle doit son passage du néant à la présence. Nous parlons d’orfèvre ou d’artisan, mais Heidegger précise bien qu’il entend le terme « production » dans un sens plus large : en particulier, la nature elle aussi produit, en permettant par exemple à la fleur de s’ouvrir.

Que signifie donc « produire » pour Heidegger ? C’est ce qu’il appelle le dévoilement, qui rassemble en lui les quatre modes du devenir. La technique n’a donc pas qu’un aspect purement matériel : elle est production dans le sens d’un dévoilement, puisqu’elle permet de faire venir au monde ce qui était en retrait dans le non-être. Nous avons trouvé là l’essence de la technique, que nous recherchions : le dévoilement. Avant de lire la suite, assurez-vous d’avoir bien saisi ce qu’Heidegger entend par dévoilement : encore une fois, il s’agit de la réunion (qui peut être opérée par un homme) des quatre causes d’Aristote permettant à une chose de passer du non-être à l’être.

MAIS – et c’est certainement là le point crucial de la pensée d’Heidegger sur la technique – l’essence de la technique que nous venons de mettre en lumière (le dévoilement) n’est pas l’essence de la technique moderne ! Car l’enjeu de la technique moderne n’est pas de produire, mais de provoquer, son objectif étant, à partir d’un calcul rationnel qui transforme la nature en disponibilité infinie, de mettre à disposition les machineries et autres dispositifs qui pourront exploiter cette disponibilité, par exemple extraire toute l’énergie possible de la nature afin de l’exploiter ou de la stocker.)

[Remarque non présente dans le texte : pour en revenir à la causalité, on peut exprimer le passage de la technique ancienne (productive) à la technique moderne (provocatrice) comme la substitution de la causalité poétique et ouverte sur l’essence des choses par la causalité scientifique telle qu’on l’entend aujourd’hui, très stricte et limitée aux relations de cause à effet entre les phénomènes, sans dimension métaphysique. La nature est ainsi dépoétisée, puisque l’émerveillement que suscite la causalité poétique a laissé place à la volonté de domination de la nature menée par la causalité scientifique, dans le but d’exploiter son potentiel énergétique. [Ici « poétique » doit être entendu non pas au sens romantique, mais tout simplement étymologique, car « poïèsis » veut dire en grec toute « production » ou toute « œuvre » qui conduit le non-être à être.]

Heidegger prend deux exemples illustrant ce passage de la production à la provocation :

  • Dans la culture artisanale, on prend soin des champs, on laisse la nature produire d’elle-même les denrées et l’énergie (à l’image du moulin à vent, dont les ailes sont livrées au vent et qui n’accumule pas d’énergie). Au contraire, la culture industrialisée est régie par la volonté d’extraire des ressources à la nature et de les stocker.

  • Autre exemple : une centrale hydraulique au bord du Rhin. Heidegger explique qu’à cause de la centrale, aujourd’hui, le Rhin est réduit à un fournisseur de puissance hydraulique. Ainsi, on ne prête plus attention au fleuve en tant que fleuve, mais en tant qu’objet de commande susceptible de fournir de l’énergie : l’essence du Rhin dépend désormais de celle de la centrale.

Qui provoque ainsi la nature ? L’homme. Mais l’homme est lui même provoqué à libérer les énergies naturelles… Qu’est-ce que cela signifie ? Que l’homme ne provoque pas spontanément la nature : il répond à un appel qui le conduit à dominer la nature. Cet appel, Heidegger le nomme l’Arraisonnement. Ainsi, l’Arraisonnement (das Gestell, en allemand, que l’on peut aussi traduire plus littéralement comme mise à disposition ou Dispositif) est cet appel qui contraint l’homme à provoquer la nature.

L’Arraisonnement explique la naissance de la science moderne, qui vise à réduire la nature à un complexe calculable. Heidegger est bien conscient de l’objection suivante : pourquoi la technique moderne (née avec l’industrialisation dès la fin du XVIIIe siècle) est-elle apparue deux siècles après la science moderne [(XVIIe siècle, avec Galilée)] ? La réponse tient en ce que la mathématisation de la nature a préparé le chemin vers la technique moderne : si celle-ci est apparue tardivement, son essence était déjà ancrée dans la physique du XVIIe siècle.

L’essence de la technique moderne est précisément l’Arraisonnement, cet appel qui exhorte l’homme à utiliser la science comme outil de domination de la nature, et non plus le dévoilement, qui conduisait l’artisan à rassembler les quatre causes d’Aristote pour faire passer des choses du non-être à l’être.

Attention, il y a là un contresens à éviter : ce n’est pas parce que l’Arraisonnement conduit l’homme à exploiter la nature au moyen de la science que la technique moderne est une fatalité, un mal qu’on ne peut arrêter. Au contraire : puisque le dévoilement est un acte libre, et que l’Arraisonnement est – même s’il s’en distingue – un mode extrême du dévoilement, l’Arraisonnement est donc un appel libérateur qui se fait l’écho du dévoilement originel. Autrement dit, la prise de conscience que l’Arraisonnement constitue l’essence de la technique moderne nous ramène au souvenir du dévoilement, vers lequel l’homme doit revenir.

La technique moderne n’est donc, pour Heidegger, ni dangereuse ni démoniaque ; en revanche l’essence de la technique moderne, l’Arraisonnement, bien qu’étant un appel libérateur, est aussi le lieu d’un grand péril. Ce danger est que l’Arraisonnement devienne tout-puissant, et que l’homme n’ait ainsi plus la possibilité de revenir à un dévoilement plus originel, dès lors occulté par la domination absolue de l’Arraisonnement.

Heidegger se met alors à l’écoute du poète Hölderlin : « Mais là où il y a danger, là aussi croît ce qui sauve. ». Ainsi, si l’on en croit Hölderlin, l’Arraisonnement contiendrait dans son essence même « ce qui sauve ». Ici sauver signifie : revenir au dévoilement, retrouver l’être des choses que la science et la technique modernes ont oublié, alors que le propre de l’homme est d’avoir la faculté d’accéder à l’être des choses grâce au dévoilement.

Pour nous sauver, il faut donc nous concentrer sur ce qu’il y a d’essentiel dans la technique et ne pas rester obnubilé par les choses techniques ; le problème aujourd’hui est que l’homme ne se concentre plus sur son être, mais sur son savoir-faire. Ce qui lui importe est de tester sur les choses sa puissance dominatrice (qu’il exerce au moyen de la science et de la technique) au lieu de se pencher sur l’être des choses. Il faut donc cesser de se représenter la technique comme un instrument, car sinon on reste enfermé dans la volonté de maîtriser la nature, qui a trait à l’Arraisonnement et non au dévoilement.

Or, c’est par le questionnement, l’interrogation dans la pensée que les chemins menant vers « ce qui sauve » commencent à s’éclairer.

[Remarque non présente dans le texte, en guise de résumé-conclusion : la technique en soi n’est pas une menace. Ce qui constitue un danger, c’est la technique lorsqu’elle est mise au service de l’exploitation et de la domination de la nature au moyen de la science moderne - une domination de la nature qui intègre également une domination de l’être humain (l’exploitation de l’homme, sa réduction à un stock, c’est-à-dire : une ressource humaine, que l’on se place dans une optique totalitaire (les camps) ou scientifique (la génétique et l’exploitation du génome). Mais l’homme a toujours la possibilité de se sauver s’il se met à l’écoute de l’appel salvateur qui doit le reconduire dans l’essence de la technique au sens de dévoilement. Ainsi, de façon anachronique, Heidegger aurait probablement soutenu qu’il faut s’émerveiller de la découverte du boson de Higgs, où la technique nous rapproche de l’être des choses, et non des nouvelles fonctionnalités de votre nouveau smartphone préféré qui, si éblouissantes soient-elles, ne relèvent que d’un pur savoir-faire !]

Résumé de La question de la technique de Martin Heidegger, publiée dans Essais et conférences (1954)

Science et méditation


heidegger

Le texte suivant retrace le cheminement des idées essentielles de la conférence « Science et méditation » de Martin Heidegger, puisée dans « Essais et conférences ».

Habituellement, on nomme « culture » le domaine où se déroule l’activité spirituelle et créatrice de l’homme, et dont la science fait partie. Mais tant qu’on considère la science en ce sens culturel, son être véritable (son essence) nous échappe : la science n’est pas qu’une activité culturelle, c’est un lieu où le réel offre à l’homme sa splendeur cachée. Or aujourd’hui, la science n’est plus perçue comme une activité désintéressée tournée vers la beauté du réel ou sa vérité, mais comme un outil de domination de la nature, de plus en plus performant. Pour comprendre tout ce qui suit, gardez bien en tête cette distinction entre science contemplative et science dominatrice.

La science contemporaine, qui s’insinue dans tous les domaines de la vie moderne (industrie, économie, politique…), se caractérise comme étant une théorie du réel. Pour comprendre ce que cela signifie et en quoi cette expression se rapporte à la domination de la nature, il faut se pencher sur les mots « théorie » et « réel ».

Qu’entend-on par « réel » ? Pour Heidegger, le réel n’est pas seulement l’ensemble des objets présents devant nous. Le réel est aussi ce qui permet aux objets d’exister, ce qui les fait passer du non-visible au visible. Ainsi, le réel est à la fois ce qui est présent, et ce qui permet à ce qui n’existe pas d’entrer dans l’existence, de devenir présent. Mais aujourd’hui, on oublie cette deuxième dimension démiurgique du réel : on ne s’intéresse plus qu’aux choses en tant que simples objets, et on a oublié ce qui fait qu’elles existent, leur être. Ainsi, à nos yeux d’homme moderne, le réel a perdu de sa teneur.

Venons-en au mot « théorie » : si on se penche sur son étymologie, on peut lui trouver deux sens, qui ne seront pas sans rappeler les deux aspects du réel mentionnés ci-dessus.

D’abord, on peut comprendre « théorie » comme venant des mots grecs théa, qui signifie l’aspect, l’apparence (qui a donné théâtre, par exemple), et oraô, qui signifie voir. L’ensemble donne : regarder l’aspect sous lequel apparaît la chose présente, c’est-à-dire considérer la chose présente en tant que simple objet.

Mais on peut aussi décomposer « théorie » en theà : la déesse, qu’Heidegger assimile à la vérité (comprise comme le surgissement dans la réalité de ce qui était caché), et ôra : le respect, la considération qu’on a pour quelque chose. Le mot théorie peut donc être aussi interprété comme l’attention respectueuse que l’on porte à la présence des choses.

Comment faut-il dès lors comprendre le mot « théorie » dans l’expression « théorie du réel » ? Certainement pas comme la theoria grecque, dans le sens d’une contemplation de la chose présente. Au contraire, la science moderne - entendue comme théorie - a vocation à dominer le réel, en le rendant prévisible. Le réel est poursuivi, dominé du regard ; il est réduit à des collections d’objets qu’on peut maîtriser. Pour ce faire, tout nouveau phénomène dans n’importe quel domaine des sciences est à travailler jusqu’à ce qu’il s’intègre dans un cadre théorique, pour qu’il devienne calculable. Ici, calcul est entendu au sens large, pas seulement restreint aux chiffres : calculer signifie considérer un phénomène et parvenir à l’expliquer rationnellement par une théorie, pour pouvoir le contrôler. Une phrase de Max Planck résume bien la réduction du réel opérée par la science actuelle : « Est réel ce qu’on peut mesurer ».

Heidegger prend alors l’exemple de la physique. Celle-ci considère la nature comme privée de vie : la physique classique permet de calculer le mouvement des objets, et la physique quantique ne s’assure que de connexions statistiques entre les objets. Et même si cette physique atomique repose sur des concepts radicalement nouveaux, elle demeure une théorie. Pourquoi ? Parce que, classique ou quantique, la physique moderne vise toujours à dominer le réel, à « pouvoir écrire une équation fondamentale de laquelle découle les propriétés de toutes les particules élémentaires et par là le comportement de la matière en général » (Werner Heisenberg [que Heidegger a connu et fréquenté]).

Ainsi, dans le passage de la physique classique à la physique contemporaine, ce qui ne change pas, c’est le fait que la théorie est toujours élaborée dans une optique de domination de la nature.

Pour condenser tout ce qui a été dit sur la science moderne, Heidegger nomme l’être (l’essence) de la science moderne : l’Incontournable. Que faut-il comprendre ?

Que pour la physique, la nature demeure l’Incontournable dans deux acceptions :

  • Incontournable dans la mesure où la physique ne peut se passer de la nature (puisque c’est son objet d’étude !)

  • Incontournable dans le sens où la science ne sera jamais en mesure de saisir l’être de la nature, parce que celle-ci ne se présente que sous forme d’objet. Autrement dit, la science ne traite la nature que comme un ensemble d’objets, et de ce fait ne sera jamais capable d’embrasser le réel dans sa totalité (qui, comme nous l’avons dit, comprend les objets, mais aussi ce qui les fait être en tant qu’objet).

Il s’agit là d’une limitation bien plus profonde de la science moderne, bien plus spirituelle que l’incertitude liée aux fondements de la science : en effet, le propos d’Heidegger n’est pas de dire que la science est limitée parce qu’elle repose sur un socle fait de postulats, de principes qui par définition ne peuvent pas être justifiés par une démonstration. Pour Heidegger, la science est limitée dans le sens où elle n’a affaire qu’à des objets qui ne sont qu’une apparence, une manière qu’a la nature de se présenter à nous. La science moderne touche aux objets, mais pas à ce qu’il y a « derrière » les objets, leur essence. Ainsi, par exemple, la science ne pourra jamais expliquer comment une chose passe de la non-existence à l’existence.

[Remarque non présente dans le texte : il ne faut pas voir ici une critique d’Heidegger envers la science ; pour Heidegger il faut être conscient de cette limitation intrinsèque de la science pour ne pas attendre d’elle des réponses qu’elle n’est pas en mesure d’apporter (par exemple, sur la nature du temps, voir à ce propos la conférence dans la section « Temps physique », minutage 5:36). C’est le sens de la phrase : « La science ne pense pas », non pas qu’elle y mette de la mauvaise volonté, mais qu’elle en est foncièrement incapable].

La fin de la conférence d’Heidegger est une exhorte à la méditation [non pas évidemment au sens bouddhiste, mais au sens d’une pensée qui commence à comprendre qu’elle n’a jamais assez pensé ce qu’elle a à penser], seul moyen selon lui de renouer avec l’être des choses que la science moderne a oublié. Mais cet état de méditation n’est pas immédiat : il ne suffit pas de prendre conscience de la situation pour en arriver à la méditation dont l’humanité aujourd’hui a besoin. Il faut pour cela s’abandonner vers « ce qui mérite qu’on interroge », cet appel spirituel qui nous ouvre les portes de l’Être…

Cette fin peut vous paraître surprenante, mais il faut bien garder à l’esprit que la philosophie d’Heidegger (du moins dans sa deuxième période) est une philosophie méditative, qui a moins vocation à fournir des réponses tranchées qu’à ouvrir de nouveaux champs de réflexion.

Résumé de Science et méditation de Martin Heidegger, publiée dans Essais et conférences (1954)

parues en 1954 dans l’ouvrage « Essais et conférences », qui s’intéressent respectivement à nos rapports avec la technique moderne et avec la science moderne.

Résumer Heidegger est une entreprise délicate, si tant est qu’elle soit seulement possible. Il a fallu simplifier certains cheminements de pensée et parfois mettre de côté des notions complexes de cette philosophie (comme celles de liberté, de vérité ou de Dasein). Cependant ces résumés vous donneront un aperçu de ces deux conférences, ainsi que des clés qui vous permettront d’aborder le texte d’Heidegger dès lors beaucoup plus accessible.

Remercions ici très chaleureusement Philippe Arjakovsky, professeur de philosophie, pour sa précieuse relecture des deux textes qui vous sont proposés. Il est co-directeur avec F. Fédier et H. France-Lanord du Dictionnaire Heidegger paru aux éditions du Cerf.

Share Button

Comment la physique quantique est-elle née ? 1/6

Comment la physique quantique est-elle née ? 1/6

2:26 Anecdote (Laurent Schwartz)
3:38 Le problème du corps noir
5:53 Max Planck : sa constante, son refus de l’interprétation de l’entropie par Boltzmann
8:21 Problème de la flèche du temps : irréversibilité des phénomènes
10:40 Qu’est-ce qu’un corps noir ? Interaction lumière – matière
12:12 Analogie : équipartition de l’énergie dans un gaz, remarque sur le rôle des collisions
17:26 Dépendance en température du spectre du corps noir
19:41 Historique du corps noir (Kirchhoff, Stefan, Wien, Rayleigh, Jeans)
23:02 Catastrophe ultraviolette ; origine de l’expression
25:17 Position de Planck dans le débat énergétistes – atomistes
26:59 Acte de désespoir de Planck : introduction d’une nouvelle constante, quantification de l’énergie E=h*nu (1900)
30:56 Exemple de corps noir : le Soleil
33:02 Efficacité de la formule de Planck, rayonnement cosmologique
35:10 Explication de la formule de Planck, modes dans une cavité, analogie avec un piano ; quanta d’énergie
40:48 Conséquences de l’hypothèse des quanta, résolution de la catastrophe ultraviolette
44:26 Einstein, l’inventeur des quanta

Share Button

Niels Bohr (1885 – 1962)


Bohr


“La prédiction est un exercice très compliqué, spécialement quand elle concerne le futur.”

Débat entre Niels Bohr et Albert Einstein à propos de la réalité de la physique quantique :
« Dieu ne joue pas aux dés ! »
« Qui êtes-vous, Einstein, pour dire à Dieu ce qu’il doit faire ? ».

Niels Bohr


Formation, découvertes et prix Nobel

Niels Bohr naît le 7 octobre 1885 à Copenhague. C’est un enfant assez sportif : il joue au football, mais néanmoins moins bien que son frère cadet, mathématicien et également très sportif puisqu’il représente le Danemark aux Jeux Olympiques de 1908.
Il entre à l’université de Copenhague en 1903 où, seulement 3 ans plus tard, il obtient une récompense de l’académie royale danoise des sciences et des lettres. Il rencontre ensuite les fondateurs des premiers modèles de l’atome, Thomson et Rutherford, et part travailler avec ce dernier en Angleterre. Il publie assez rapidement un modèle de l’atome sous la forme d’un noyau autour duquel gravitent des électrons sur plusieurs couches, en ayant la possibilité de changer de couche en émettant un quantum d’énergie (le photon). Quelques années plus tard, il obtient une équation qui permet de calculer les niveaux d’énergie possibles pour l’électron au sein de l’atome d’hydrogène.

Il obtient le prix Nobel de physique en 1922 pour ses recherches concernant la structure des atomes et les radiations qu’ils peuvent émettre. Bohr, scientifique très apprécié de ses compatriotes danois, reçoit en cette occasion un cadeau de la brasserie Carlsberg. Il s’agit d’une maison située près de la brasserie, qui a un robinet de bière qui s’y approvisionnait directement!

Positionnement face au nucléaire

A la fin des années 30, il continue à concentrer ses recherches sur le noyau atomique. Cependant, le climat hostile en Europe et l’occupation du Danemark le contraignent à s’échapper en Suède, en raison des origines juives de sa mère. Il arrive clandestinement en Angleterre, puis aux Etats-Unis, où il travaille pour le projet Manhattan. Après la guerre, il revient dans son pays où il œuvre pour une utilisation pacifique de l’énergie nucléaire. Il participe notamment à la création du CERN.
Il meurt à Copenhague en 1962.

Anecdote

Share Button

Discours sur l’origine de l’Univers

discours_origine_univers

D’où vient l’univers ? Et d’où vient qu’il y a un univers ? Irrépressiblement, ces questions se posent à nous. Et dès qu’un discours prétend nous éclairer, nous tendons l’oreille, avides d’entendre l’écho du tout premier signal : les accélérateurs de particules vont bientôt nous révéler l’origine de l’univers en produisant des « big bang sous terre » ; les données recueillies par le satellite Planck nous dévoiler le « visage de Dieu » ; certains disent même qu’en vertu de la loi de la gravitation l’univers a pu se créer de lui-même, à partir de rien… Le grand dévoilement ne serait donc devenu qu’une affaire d’ultimes petits pas ? Rien n’est moins sûr… Car de quoi parle la physique quand elle parle d’« origine » ? Qu’est-ce que les théories actuelles sont réellement en mesure de nous révéler ? À bien les examiner, les perspectives que nous offre la cosmologie contemporaine sont plus vertigineuses encore que tout ce que nous avons imaginé : l’univers a-t-il jamais commencé ?

Share Button

Le facteur temps ne sonne jamais deux fois

facteur_temps

Chose déroutante, décidément, que le temps. Nous en parlons comme d’une notion familière, évidente, voire domestique, “gérable”. Nous parlons même d’un “temps réel” pour évoquer l’instantanéité, c’est-à-dire le temps sur lequel nous n’avons aucune prise. Les physiciens, eux, l’ont couplé à l’espace, en ont fait une variable mathématique, abstraite, qu’ils intègrent dans des théories audacieuses, spectaculaires, mais si complexes qu’elles sont difficiles à traduire en langage courant. Certains disent même avoir identifié le moteur du temps. Quant aux philosophes, ils ne cessent depuis plus de deux millénaires de soumettre le temps au questionnement : est-il une sorte d’entité primitive, originaire, qui ne dériverait que d’elle-même ? Ou procéderait-il au contraire d’une ou plusieurs autres entités, plus fondamentales : la relation (de cause à effet, par exemple) ? Le temps s’écoule-t-il de lui-même ou a-t-il besoin des événements qui s’y déroulent pour passer ? S’apparente-t-il au devenir, au changement, au mouvement ? Et au fait, le temps a-t-il eu un commencement ? Aucune discipline ne parvient à épuiser, à elle seule, la question du temps. C’est pourquoi nous avons croisé les regards des philosophes avec ceux des physiciens. Et que se passe-t-il ? Sans aucun doute de belles et troublantes choses…

Share Button

Il était sept fois la révolution

41cHc9K7F0L._SX297_BO1,204,203,200_

Certaines révolutions sont lentes et ne font pas couler de sang. Entre 1925 et 1935, la physique a connu un tel bouleversement : les atomes, ces petits grains de matière découverts quelques années plus tôt, n’obéissaient plus aux lois de la physique classique. Il fallait en inventer de nouvelles, penser autrement la matière. Une décennie d’effervescence créatrice, d’audace, de tourments, une décennie miraculeuse suffit à un petit nombre de physiciens, tous jeunes, pour fonder l’une des plus belles constructions intellectuelles de tous les temps : la physique quantique, celle de l’infiniment petit, sur laquelle s’appuie toujours la physique actuelle. Originaux, déterminés, attachants, pathétiques parfois, ces hommes ont en commun d’avoir été, chacun à sa façon, des génies. Dispersés aux quatre coins de l’Europe, à Cambridge, Copenhague, Vienne, Göttingen, Zurich ou Rome, ils se rencontraient régulièrement et s’écrivaient souvent. Leurs travaux se faisaient écho, suscitant l’admiration des uns, la critique des autres, jusqu’à ce qu’ils constituent un édifice formel cohérent. Ce livre rend hommage à quelques-uns de ces hommes remarquables : George Gamow, Albert Einstein, Paul Dirac, Ettore Majorana, Wolfgang Pauli, Paul Ehrenfest et Erwin Schrödinger.

Share Button

Remerciements

Tout d’abord, merci à tous ceux qui nous aident à faire connaître le site :

  • Bruce Benamran, fondateur de la chaîne Youtube e-penser
  • Florence Porcel, que vous pouvez retrouver sur son blog

Merci aussi à

  • Yvan Derogis, pour son aide au tout début lors de la mise en route du site, et pour ses précieux conseils en matière de référencement

  • Clément Germanicus, pour son aide et sa disponibilité lors de la réalisation de la vidéo de présentation du site, que vous pouvez visionner sur la page d’accueil

Merci également aux annuaires en ligne qui acceptent gracieusement de référencer le site :

En attente :

Merci aussi aux autres sites qui acceptent gracieusement de référencer le site :

  • Le site Sciences Claires, également consacré à la vulgarisation scientifique : Bouton

Enfin, merci à tous les partenaires suivants qui ont accepté que des médias qui leur appartiennent figurent sur le site :

France Culture

logo france culture

Les podcasts sont tirés de l’émission “la conversation scientifique” diffusée sur France Culture. Vous pouvez retrouver plus de podcasts à l’adresse suivante : France Culture.

Parenthèse Culture

logo parenthèse culture

Parenthèse Culture est un cycle de conférence de personnalités éminentes sur différents sujets. Plus d’informations sur : Parenthèse Culture.

Universcience

logo universcience

Universcience est l’établissement public issu du rapprochement entre le Palais de la découverte et la Cité des sciences et de l’industrie. Pour en savoir plus rendez-vous sur : Universcience.

Université de tous les savoirs

logo université de tous les savoirs

L’Université de tous les savoirs (UTLS) est une initiative du gouvernement français afin de vulgariser les dernières avancées de la science. Rendez-vous sur le site de Canal U pour plus d’informations : Université de tous les savoirs.

Espace des Sciences (Rennes)

logo espace des sciences

L’Espace des sciences de Rennes Bretagne est un centre de culture scientifique, technique et industrielle. Avec près de 200 000 visiteurs par an, il est le centre de sciences le plus fréquenté en régions, après la Cité de sciences et le Palais de la découverte. Retrouvez les sur : Espace des sciences.

CEA

logo cea

Le Commissariat à l’énergie atomique et aux énergies alternatives (CEA) est un organisme public de recherche à caractère scientifique, technique et industriel (EPIC).​
Acteur majeur de la recherche, du développement et de l’innovation, le CEA intervient dans le cadre de quatre missions : la défense et la sécurité, l’énergie nucléaire (fission et fusion), la recherche technologique pour l’industrie et la recherche fondamentale (sciences de la matière et sciences de l​a vie). Plus d’informations sur leur site internet : CEA.

Centrale Supelec

logo centralesupelec

Établissement public à caractère scientifique, culturel et professionnel constitué sous la forme d’un grand établissement. Pour plus d’informations : Centrale Supelec.

Share Button

Qu’est-ce que la relativité générale ?

0:00 La gravitation, une force mystérieuse
1:33 Qu’est-ce que le poids ? Différence entre masse et poids
2:41 La gravitation, une force extrêmement faible ; exemple de l’atome d’hydrogène
3:52 La gravitation vue par Newton, influence de Galilée
5:42 Contradiction entre la vision newtonienne et la relativité restreinte ; exemple de la théière
8:52 Rencontre d’Einstein avec Michele Besso
10:35 Mai 1907 : « l’idée la plus heureuse de ma vie » (Einstein) : la chute libre
14:34 Principe d’équivalence, géométrisation de la gravitation
18:25 Esquisse de la relativité générale : déformation de l’espace-temps, lien avec la matière ; exemple du système solaire
23:10 Anomalie d’Uranus et anomalie du périhélie de Mercure
29:30 Histoire officielle de la résolution du paradoxe du périhélie de Mercure
32:22 Nouvelle version de l’histoire : insuffisances de l’esquisse de 1913
36:50 Engouement pour la relativité générale : la pensée de la nouveauté et l’influence sur les futurs fondateurs de la mécanique quantique
42:19 L’univers vu comme un objet global doté d’une histoire ; métrique de Schwarzschild
45:23 Solutions statiques des équations d’Einstein ; introduction de la constante cosmologique
47:31 La constante cosmologique, une erreur ? Un candidat pour l’énergie noire ?
48:27 Observation des galaxies : dilatation de l’espace, expansion de l’univers et Big Bang

Share Button

De quoi la matière est-elle le nom ?

0:00 L’atome des grecs (Démocrite) et l’atome des physiciens
3:11 Peut-on définir la matière ?
5:14 L’autorité de l’image (Roland Barthes)
6:21 Les chambres à bulles (Glaser)
10:20 Les propriétés spontanées de la matière sont-elles fiables ? Y a-t-il une loi de conservation de la matière ?
14:28 Contre-exemple en physique des particules : une collision au LHC ; la conservation de l’énergie et ses implications
16:52 Le vide n’est pas vide ! Les petites particules Belles au bois dormant
19:03 Masse et matière, deux concepts distincts

Share Button

Erwin Schrödinger (1887 – 1961)


Schrodinger

L’homme d’une équation…


Equationschrodinger

…et de plusieurs femmes

« Aimez une fille de tout votre cœur, et embrassez-la sur la bouche : alors le temps s’arrêtera, et l’espace cessera d’exister. »

Erwin Schrödinger

Schrödinger, le grand amoureux des femmes

S’il n’était pas bel homme, c’était plutôt un grand romantique, qui idéalisait les femmes, mais aussi la jeunesse, et aimait le caractère tumultueux et fougueux du sentiment amoureux… Il tenait un journal intime, baptisé Les Ephémérides, dans lequel il notait les prénoms de ses conquêtes, le dénouement de chaque aventure, quelques vers pour chacune et analysait scrupuleusement ce qu’il venait de saisir de l’essence de la féminité.

Formation

Erwin Schrödinger naît le 12 août 1887 à Vienne, ville animée fréquentée à la fois par les artistes et des intellectuels de l’époque. Fils unique, il reçoit la visite d’un professeur chez lui et est également instruit pas sa famille : il apprend l’anglais et devient bilingue, et a également accès à l’immense bibliothèque de ses parents. A onze ans, il étudie dans un prestigieux lycée de Vienne, où il est brillant. Il se passionne à la fois pour les matières scientifiques (mathématiques et physique) et les lettres (langues anciennes et littérature). Ce deuxième intérêt explique sans doute pourquoi il adresse déjà des sonnets aux jeunes filles dont il s’éprend…

Dix ans plus tard, il entre à l’université de Vienne où il suit assidûment les cours de physique et de philosophie. Après ses études, il y est recruté en tant qu’assistant de physique expérimentale.

L’équation de Schrödinger

Lorsque la première Guerre éclate, il est envoyé au front, où, trouvant le temps long, il publie des articles sur le mouvement brownien et continue à écrire des cahiers de philosophie. Il se procure également l’article sur la théorie de la relativité générale d’Einstein et se passionne pour cette lecture.

Schrödinger, très courageux pendant la guerre de 14-18, découvre Einstein et Schopenhauer sur le front italien…

Démobilisé, il se tourne vers la philosophie. Assistant en physique à l’université, il se marie mais c’est un mariage qui va rapidement battre de l’aile, d’autant plus que Schrödinger passe son temps à voyager pour son travail. Parallèlement, il étudie la thèse de de Broglie qui affirme que les électrons peuvent se comporter comme des ondes et non seulement comme des corpuscules.

En décembre 1927, une escapade dans les Grisons avec une maîtresse lui permet d’inventer une équation qui décrit les ondes associées aux électrons dont parlait de Broglie. En la résolvant pour l’atome d’hydrogène, il obtient des résultats cohérents avec les niveaux d’énergie de l’atome proposés par Bohr ! Cette équation est la fameuse « équation de Schrödinger ».

Equationschrodinger

Schrödinger pointe du doigt le paradoxe de la physique quantique : d’après les lois de la physique, les objets qui nos entourent semblent avoir un comportement « classique », alors que leurs composantes ot un comportement quantique qui est parfois difficile à conceptualiser…

Et qu’en est-il du chat de Schrödinger ?

Un paradoxe qui va occuper les physiciens de son époque est celui d »’états superposés » : autrement dit, les équations de la physique quantique donnent des résultats qui permettent aux objets physique d’être dans plusieurs états à la fois ! Convaincu qu’i s’agit d’une erreur d’interprétation, Schrödinger écrit à Einstein cet exemple du chat. L’expérience consiste à imagier une boîte contenant un chat, un marteau prêt à s’abattre sur une fiole contenant un gaz mortel. On suppose qu’un « détecteur de particules émises par la désintégration d’un atome » hypothétique est relié au marteau et l’actionne si la désintégration a lieu.

Pour décrire un système, la physique de l’époque le décrivait comme la somme des états des systèmes correspondant au cas où l’atome est désintégré et au cas où il n’est pas désintégré. Conceptuellement « acceptable », Schrödinger trouve ceci absurde car si l’on rapporte ce fonctionnement au système du chat, l’état « atome non désintégré » correspond au chat mort, auquel il faut ajouter l’état « atome désintégré » correspondant au chat vivant ! Cette description du système revient à penser que le chat se trouve dans un état intermédiaire entre mort et vivant, impossible à concevoir pour Schrödinger…

Pour approfondir, voir chapitre « Erwin Schrödinger, l’homme des superpositions », dans Il était sept fois la Révolution

…de gauche à droite : Sheila Power, Pádraig de Brún, Paul Dirac, Eamon de Valera, Arthur Conway, Arthur Eddington, lui-même, et Albert J. McConnell, en 1942 lors d’un colloque à Dublin

Dublin_1942

Share Button

Qu’est-ce que la relativité restreinte ?

0:00 Ambitions d’Einstein en 1902 ; office des brevets à Berne
2:37 La synchronisation des horloges, une priorité nationale
4:10 1905, l’année miraculeuse de la physique
6:16 L’effet photoélectrique ; postulat des quanta de lumière
9:06 Le mouvement brownien ; postulat puis vérification (Perrin, 1906) de l’existence de l’atome
11:20 Peut-on synchroniser des horloges à distance ?
12:25 Théories dominantes au XIXe siècle : la mécanique et l’électromagnétisme ; incompatibilité de ces deux théories : l’éther luminifère
16:59 Principe de relativité : le mouvement (rectiligne uniforme) est comme rien
20:37 Mise à mort de l’éther par Einstein
21:55 Questions posées par Einstein dans l’article de juin 1905
25:10 La relativité restreinte, une théorie universelle de l’espace-temps
26:46 Un observateur en chute libre ne sent pas son poids : le principe d’équivalence
29:23 La fin du temps universel newtonien, exemple des deux lampes
35:28 Tautologie : « vitesse d’écoulement du temps » 
39:39 Autant de temps propres que d’observateurs ; le problème du vocabulaire
42:12 Paradoxe des jumeaux de Langevin
43:50 Lien entre l’inertie et l’énergie d’un corps : E = mc2, la vitesse de la lumière devient une constante universelle de la physique
49:00 Applications de E = mc2
51:05 Implication de l’existence d’une vitesse limite ; l’inertie n’est pas la masse
53:24 Exemple de collision au LHC ; collision particule – antiparticule
56:28 Vraie formule E2 = m2c4 + p2c2 : existence possible de particules sans masse, se déplaçant à la vitesse de la lumière

Share Button

Allons-nous liquider la science ?

allons_nous_liquider_la_science

Cet essai est né d’une rencontre avec des chefs indiens d’Amazonie. Que pensons-nous qu’ils ne pensent pas ? Que savent-ils que nous ignorons ? La science nous sauvera-t-elle, et son progrès n’est-il qu’heureux ? Ou bien est-elle devenue la cause de toutes sortes de méfaits ? Ces questions suscitent des débats d’autant plus vifs que les « accidents » se multiplient (nucléaire, dérèglement climatique, vache folle…). Pour Étienne Klein, c’est la question même du projet politique de la cité qui se trouve là posée. Galilée et Descartes sont ceux qui ont préparé l’avènement de la science moderne. Mais en mathématisant la nature, la science a instauré une hiérarchie que seul l’Occident reconnaît, avec l’homme en haut de l’échelle, et, réduits au rang d’entités utilitaires, les plantes, les arbres, les animaux… Cette conception a rendu possible l’exploitation de la nature. En un demi-siècle à peine, nous sommes passés d’un régime où science et technique étaient liées par de complexes rapports à l’empire d’une vaste technoscience, qui vise la seule efficacité. Cette efficacité n’est-elle pas en train de se retourner contre nous ? Allons-nous liquider la science au motif d’un mauvais usage du monde ?

Share Button

Max Planck (1858 – 1947)


Planck


“Une théorie nouvelle ne triomphe jamais. Ce sont ses adversaires qui finissent par mourir.”

“Même la théorie physique la plus parfaite n’est pas en mesure de répondre à une question mal formulée.”

Max Planck



Formation

Max Planck est né à Kiel le 23 avril 1858. Il est né dans une famille intellectuelle certes, mais pas scientifique, puisque son père était professeur de droit à l’université, et ses grands-parents professeurs de théologie ! Il étudie à l’université, où il est tiraillé entre des études de musique et de sciences. Ce sont finalement les mathématiques qui l’emportent sur le piano, et il étudie avec des professeurs tels que Kirchhoff ou Helmholtz. Après ses études, il devient professeur de physique à l’université de Munich.

Recherches et découvertes

Ses premiers travaux (qu’il a réalisés pour sa thèse, en 1878) portaient sur la thermodynamique, ce qui s‘explique par l’influence de son professeur Kirchhoff. Il s’intéresse ensuite à l’électromagnétisme et à la physique statistique. C’est finalement lui qui, en 1900, détermine la répartition spectrale du rayonnement pour les corps noirs. Cette théorie est émise sur l’idée, révolutionnaire à l’époque, que l’énergie ne pouvait prendre que des valeurs discrètes, ou « quanta ». Il recevra le prix Nobel pour cette théorie en 1918.

La seconde Guerre Mondiale, une période difficile…

Pendant la seconde Guerre Mondiale, Planck connaît une période particulièrement difficile, puisqu’il décide de rester en Allemagne en considérant que c’était son devoir. Toutefois, il s’opposait ouvertement au régime Nazi, en particulier la persécution des juifs. En 1944, un de ses fils fut exécuté pour la part qu’il a joué dans un attentat manqué contre Hitler.Les dernières semaines de la guerre furent très difficiles pour lui puisque sa maison fut détruite par les bombardements…
Planck meurt deux ans après la fin de la guerre, en 1947.

Share Button

Werner Heisenberg (1901 – 1976)

Dirac

“Ce que nous observons n’est pas la nature elle-même, mais la nature soumise à notre méthode de questionnement.”

“Les problèmes du langage sont ici très sérieux. Nous souhaitons parler de la structure des atomes. Mais nous ne pouvons pas parler des atomes dans notre langage ordinaire.”

Werner Heisenberg


Education

Werner Heisenberg est né le 5 décembre 1901 à Würzburg en Bavière, dans une famille d’enseignants. Il fréquente le lycée à Munich jusqu’en 1920. Il poursuivit son éducation en physique théorique et en mathématiques à l’Université de Munich, puis à Göttingen où il a des professeurs renommés comme Max Born, ou encore Sommerfeld.
Il travaille aux Universités de Copenhague, puis de Leipzig où il deviendra professeur à 26 ans seulement et fait de cette université un des plus hauts lieux de la physique théorique.

Ses avancées en mécanique quantique

A 23 ans seulement, il publie sa théorie de la mécanique quantique pour laquelle il reçoit le prix Nobel huit ans plus tard. Cette théorie est basée seulement sur des observations. Il affirme que le modèle de Bohr de l’atome, avec des électrons sur des orbites autour du noyau, n’est pas forcément pertinent, sachant que par expérience on ne peut pas déterminer à la fois la position dans l’espace à un instant donné et sa trajectoire. Cette théorie le pousse ensuite à formuler son fameux « principe d’indétermination », qui affirme que la position et la quantité de mouvement d’une particule contiennent nécessairement des imprécisions, dont le produit est inférieur à la constante h.


Formuleheisenberg

Heisenberg et la seconde Guerre Mondiale

Heisenberg décide de rester en Allemagne dès que le régime nazi commence. Malgré sa participation à plusieurs voyages de propagande nazie, il dit être resté en Allemagne non pas par sympathie avec le régime, mais pour préparer l’après-guerre. Il dirige ainsi le programme d’armement nucléaire allemand, mais a toujours une position ambiguë à comprendre vis-à-vis de ce projet. En effet, il est persuadé que l’Allemagne gagnera la guerre, mais sans utiliser la bombe atomique lors de la guerre. Il dit freiner le projet et participer au développement de l’énergie nucléaire pacifique. En discussion avec Bohr, ils ont un froid à ce sujet, ce qui pousse Bohr à rejoindre les Américains au projet Manhattan. Après la guerre, il écrit finalement, avec 18 autres physiciens, une lettre au chancelier Adenauer encourageant à abandonner le projet de bombe atomique.
Après la guerre, il poursuit ses recherches sur la théorie des particules élémentaires. Il meurt à Munich le 2 février 1976.

Share Button

Les articles de l’année 1905

17 mars 1905 : “Sur un point de vue heuristique concernant la production et la transformation de la lumière”
Disponible ici (avec traduction partielle en français) : Article du 17 mars 1905

11 mai 1905 : “Sur le mouvement de particules en suspension dans un fluide au repos impliqué par la théorie cinétique moléculaire de la chaleur”
Article en anglais : Investigations on the theory of the brownian movement

30 juin 1905 : “Sur l’électrodynamique des corps en mouvement”
Article en anglais : On the electrodynamics of moving bodies
Version en français : De l’électrodynamique des corps en mouvement
Traduction de l’allemand vers l’anglais : D.H, Jivesh3141 et l’IP 83.79.31.102
Traduction de l’anglais vers le français : Cantons-de-l’Est et Simon Villeneuve
Texte sous licence CC-BY-SA

27 septembre 1905 : “L’inertie d’un corps dépend-elle de son énergie ?”
Article en anglais : Does the inertia of a body depend upon its energy-content ?
Où l’on apprend que E=mc2…

Share Button

Les Tactiques de Chronos

41cHc9K7F0L._SX297_BO1,204,203,200_

Le temps est une “chose” introuvable dont l’existence ne fait aucun doute. Une “chose” dont tout le monde parle mais que personne n’a jamais vue. Nous voyons, entendons, touchons, goûtons dans le temps, mais non le temps lui-même. Contre toute attente, Chronos est un planqué, un caméléon qu’il faut débusquer sous nos habitudes de langage et de perception. Pour le déjouer, il va falloir l’effeuiller peu à peu, le déshabiller, le distinguer de ses effets les plus sensibles : la durée, la mémoire, le mouvement, le devenir, la vitesse, la répétition… Parce que les horloges ne mesurent pas forcément du temps. Parce que le temps est toujours là alors qu’on dit qu’il s’écoule. Et qu’il existe indépendamment de ce qui survient, se transforme, vieillit et meurt. Aujourd’hui, le regard le plus audacieux et le plus déconcertant sur le temps, c’est la physique qui le porte. De Galilée à Einstein, puis de l’antimatière aux supercordes, elle n’a cessé d’approfondir la question jusqu’à ouvrir des perspectives qui donnent le vertige : le temps a-t-il précédé l’Univers ? Comment s’est-il mis en route ? Pourrait-il inverser son cours ? l’interrompre puis le reprendre ? Existerait-il plusieurs temps en même temps ? Au bout du compte, le temps pourrait ne plus du tout se ressembler.

Share Button

Le Congrès Solvay de 1927

Physicien théoricien (allemand, puis anglais), il est principalement connu pour son importante contribution à la physique quantique. Il a été le premier à donner au carré du module de la fonction d’onde la signification d’une densité de probabilité de présence.
Figure monumentale de la physique, monolithe écrasant, mythologie gelée à lui tout seul : que faudrait-il dire de plus ?

Qui était Albert Einstein ?
Qu’est-ce que la relativité restreinte ?
Qu’est-ce que la relativité générale ?
Ce physicien néérlandais s’est consacré à l’étude de la constitution de la matière et la nature de la lumière. Il est co- lauréat du prix Nobel de Physique de 1902.
Physicienne et chimiste franco-polonaise, elle découvrit avec son époux Pierre Curie deux nouveaux éléments radioactifs, le radium et le polonium. Cette découverte leur valut l’attribution du prix Nobel de 1903, en même temps qu’Henri Becquerel. En 1911, elle obtint le prix Nobel de chimie et fut la seule femme présente au congrès Solvay cette année-là.

Qui était Marie Curie ?
Physicien allemand qui fut le père du quantum. En 1900, il découvrit, à sa plus grande surprise et sans y croire vraiment, la quantification des échanges d’énergie entre la matière et la lumière. Le formalisme de la physique quantique, construit au cours des années 1920, en découlera.

Qui était Max Planck ?
Ingénieur des mines, il fut pendant toute sa carrière directeur associé du laboratoire de recherches General Electrics. Ses travaux sur la physque des nuages ont permis de mettre au point le déclenchement artificiel de la pluie ou “ensemencement des nuages”. Il est lauréat du prix Nobel de Chimie de 1932 pour ses travaux sur la chimie des surfaces.
Physicien français, auteur d’une célèbre théorie du magnétisme et connu pour avoir introduit en France la théorie de la relativité d’Einstein.
Professeur Suisse, spécialisé en relativité restreinte. A l’époque, il fournit la meilleurs vérification expérimentale de la variation de la masse d’un objet en fonction de sa vitesse.
Ce physicien fut le premier et le seul écossais à recevoir le prix Nobel de Physique. C’est lors d’une randonnée que, frappé par la beauté des nuages, il décida de reproduire ce phénomène en laboratoire. C’est ses recherches sur la physique des nuages qui lui valurent le prix Nobel en 1927.
Il fut lauréat du prix Nobel de physique de 1928. Cependant, la Fondation Nobel ne décerna pas de prix en Physique cette année-là, car les travaux des nominés ne satisfaisaient pas tous leurs critères… Son prix ne lui fut donc délivré qu’une année plus tard, en 1929.
Physicien danois, qui joua un rôle déterminant dans l’édification de la mécanique quantique, notamment en proposant en 1913 un modèle de l’atome qui n’était pas compatible avec les lois classiques. Il obtint le prix Nobel en 1922.

Qui était Niels Bohr ?
Physicien français qui obtint le prix Nobel en 1929 pour sa découverte de la nature ondulatoire des électrons.
Physicien américain, lauréat du prix Nobel en 1927 « pour la découverte de l’effet nommé en son nom qui a apporté en 1922 la preuve de l’aspect corpusculaire du rayonnement électromagnétique.
Physicien britannique, réputé pour son laconisme, il écrivit en 1928 l’équation qui lui permit de prédire deux ans plus tard l’existence de l’antimatière.

Qui était Paul Dirac ?
Physicien néerlandais, collaborateur de Niels Bohr, qui a participé au développement de la mécanique quantique et à ses applications aux propriétés optiques et magnétiques de la matière.
Physicien australien, il se forma à Cambridge et s’intéressa beaucoup aux structures des cristaux. Il reçut avec son père le prix Nobel de Physique en 1915 pour leurs travaux d’analyses cristallines aux rayons X.
Physicien danois, notamment connu pour ses travaux sur les écoulements moléculaires de gaz.
Formé à l’Université de Munich, il enseigna la physique en Allemagne avant d’émigrer aux Etats-Unis au moment de la seconde Guerre Mondiale. Ses travaux sur les moments dipolaires, les rayons X et les électrons dans les gaz lui valurent le prix Nobel de Chimie en 1936.
Héritier d’une grande lignée de scientifiques puisque son père et son grand-père occupèrent une chaire au Collège de France. Mobilisé pendant la première guerre mondiale dans le service de radiotélégraphie, c’est dans ce domaine qu’il se spécialisa et publia Science et théorie de l’information.
Physicien britannique, connu pour avoir expliqué le phénomène d’émission par effet de champs. Il collabora avec Paul Dirac sur la mécanique statistique appliquée aux naines blanches.
Physicien allemand qui fut l’un des fondateurs de la mécanique quantique. On lui doit notamment d’avoir énoncé en 1927 le principe d’indétermination qui demeure associé à son nom. Il fut lauréat du prix Nobel de physique en 1932.

Qui était Werner Heisenberg ?
Physicien théoricien autrichien qui réalisa des travaux prophétiques. Il envisagea notamment, en 1930, l’existence d’une nouvelle particule, le neutrino, qui fut avérée vingt-cinq ans plus tard.

Qui était Wolfgang Pauli ?
Physicien belge, qui a été professeur à l’Université de Gand.
Physicien autrichien, grand amoureux des femmes, qui conçut en 1925, lors d’une escapade dans les Grisons avec une jeune maîtresse, l’équation pilotant le comportement des électrons au sein des atomes.

Qui était Erwin Schrödinger ?
Commençant sa carrière en tant que simple instituteur, il fit des études supérieurs solitaires et laissa, malgré ses débuts tardifs, un nombre de travaux considérable ! Il était convaincu que l’univers est mathématisable. Homme très cultivé, ce fut également un excellent pianiste.
Ce chimiste Belge participa au sept premiers congrès Solvay. Il fut directeur de la section des sciences physiques et chimiques à l’Institut des Hautes Études scientifiques (créée pour offrir aux scientifiques une émulation intellectuelle « libre de toute contrainte pédagogique et administrative »). Il anima des conférences dont l’objet était de commenter un film sur la relativité d’Albert Einstein.

Physicien autrichien, ami proche d’Albert Einstein, il apporta des contributions majeures en thermodynamique et excella à créer des liens entre les plus grands physiciens, à provoquer des rencontres, mais son sens critique et son tempérament mélancolique le poussèrent au suicide.

Qui était Paul Ehrenfest ?
Correspondant de l’Académie des sciences dans le département de la physique générale, il mit en évidence la radioactivité du potassium et du rubidium dans leur état naturel. Il fut également pionnier dans l’étude du microscope éléctronique.
Inventeur génial, il accorda une énorme importance à l’expérimentation. Il acquit une renommée mondiale pour ses ascensions scientifiques dans la haute atmosphère et ses plongées dans les abysses sous-marines. C’est de lui dont s’est inspiré Hergé pour le personnage du professeur Tournesol, inventeur d’un prototype de sous-marin !

Cliquez sur un physicien pour obtenir une description et, pourquoi pas, un lien caché...

Share Button

Comment la physique quantique est-elle née ? 3/6

Pourquoi les quanta sont-ils si troublants ? 3/6

2:03 Article d’Einstein (1905) : quantification de l’énergie, nature corpusculaire de la lumière
3:37 L’effet photoélectrique : description et interprétation
5:57 Interférences lumineuses, expérience de Young, nature ondulatoire de la lumière
8:33 Expérience de Young avec des électrons
12:29 Critère quantique, action (grandeur physique)
16:12 Quand doit-on faire appel à la physique quantique ? Exemples : montre, antenne de radio, atome d’hydrogène, noyau de l’atome ; systèmes macroscopiques quantiques
22:11 Percée théorique des années 20 : nature ni corpusculaire, ni ondulatoire des objets quantiques
26:03 Le principe de superposition : notion d’état physique et problème de sa représentation, remarque mathématique sur les espaces vectoriels et les vecteurs d’état 
34:32 Le principe de superposition comme principe fondamental de la physique quantique ; citation de Dirac
36:00 De l’espace physique à l’espace abstrait hilbertien : la question de l’interprétation de la physique quantique
38:08 Fonctions d’onde complexes, obtention de l’équation de Schrödinger à partir du principe de superposition (Feynman)
42:32 Application de l’équation de Schrödinger : le spectre de l’atome d’hydrogène, l’oscillateur harmonique
44:33 Principe d’indétermination d’Heisenberg (1927) : erreurs d’interprétation

Share Button