Site de vulgarisation scientifique d'Etienne Klein
"Il me plaît de penser que la physique est une sorte d’alpinisme intellectuel consistant à grimper jusqu’à des hauteurs himalayennes où le logos est rare et la vérité mutique."
photo E. Klein
signature E. Klein

Erwin Schrödinger (1887 – 1961)


Schrodinger

L’homme d’une équation…


Equationschrodinger

…et de plusieurs femmes

« Aimez une fille de tout votre cœur, et embrassez-la sur la bouche : alors le temps s’arrêtera, et l’espace cessera d’exister. »

Erwin Schrödinger

Schrödinger, le grand amoureux des femmes

S’il n’était pas bel homme, c’était plutôt un grand romantique, qui idéalisait les femmes, mais aussi la jeunesse, et aimait le caractère tumultueux et fougueux du sentiment amoureux… Il tenait un journal intime, baptisé Les Ephémérides, dans lequel il notait les prénoms de ses conquêtes, le dénouement de chaque aventure, quelques vers pour chacune et analysait scrupuleusement ce qu’il venait de saisir de l’essence de la féminité.

Formation

Erwin Schrödinger naît le 12 août 1887 à Vienne, ville animée fréquentée à la fois par les artistes et des intellectuels de l’époque. Fils unique, il reçoit la visite d’un professeur chez lui et est également instruit pas sa famille : il apprend l’anglais et devient bilingue, et a également accès à l’immense bibliothèque de ses parents. A onze ans, il étudie dans un prestigieux lycée de Vienne, où il est brillant. Il se passionne à la fois pour les matières scientifiques (mathématiques et physique) et les lettres (langues anciennes et littérature). Ce deuxième intérêt explique sans doute pourquoi il adresse déjà des sonnets aux jeunes filles dont il s’éprend…

Dix ans plus tard, il entre à l’université de Vienne où il suit assidûment les cours de physique et de philosophie. Après ses études, il y est recruté en tant qu’assistant de physique expérimentale.

L’équation de Schrödinger

Lorsque la première Guerre éclate, il est envoyé au front, où, trouvant le temps long, il publie des articles sur le mouvement brownien et continue à écrire des cahiers de philosophie. Il se procure également l’article sur la théorie de la relativité générale d’Einstein et se passionne pour cette lecture.

Schrödinger, très courageux pendant la guerre de 14-18, découvre Einstein et Schopenhauer sur le front italien…

Démobilisé, il se tourne vers la philosophie. Assistant en physique à l’université, il se marie mais c’est un mariage qui va rapidement battre de l’aile, d’autant plus que Schrödinger passe son temps à voyager pour son travail. Parallèlement, il étudie la thèse de de Broglie qui affirme que les électrons peuvent se comporter comme des ondes et non seulement comme des corpuscules.

En décembre 1927, une escapade dans les Grisons avec une maîtresse lui permet d’inventer une équation qui décrit les ondes associées aux électrons dont parlait de Broglie. En la résolvant pour l’atome d’hydrogène, il obtient des résultats cohérents avec les niveaux d’énergie de l’atome proposés par Bohr ! Cette équation est la fameuse « équation de Schrödinger ».

Equationschrodinger

Schrödinger pointe du doigt le paradoxe de la physique quantique : d’après les lois de la physique, les objets qui nos entourent semblent avoir un comportement « classique », alors que leurs composantes ot un comportement quantique qui est parfois difficile à conceptualiser…

Et qu’en est-il du chat de Schrödinger ?

Un paradoxe qui va occuper les physiciens de son époque est celui d »’états superposés » : autrement dit, les équations de la physique quantique donnent des résultats qui permettent aux objets physique d’être dans plusieurs états à la fois ! Convaincu qu’i s’agit d’une erreur d’interprétation, Schrödinger écrit à Einstein cet exemple du chat. L’expérience consiste à imagier une boîte contenant un chat, un marteau prêt à s’abattre sur une fiole contenant un gaz mortel. On suppose qu’un « détecteur de particules émises par la désintégration d’un atome » hypothétique est relié au marteau et l’actionne si la désintégration a lieu.

Pour décrire un système, la physique de l’époque le décrivait comme la somme des états des systèmes correspondant au cas où l’atome est désintégré et au cas où il n’est pas désintégré. Conceptuellement « acceptable », Schrödinger trouve ceci absurde car si l’on rapporte ce fonctionnement au système du chat, l’état « atome non désintégré » correspond au chat mort, auquel il faut ajouter l’état « atome désintégré » correspondant au chat vivant ! Cette description du système revient à penser que le chat se trouve dans un état intermédiaire entre mort et vivant, impossible à concevoir pour Schrödinger…

Pour approfondir, voir chapitre « Erwin Schrödinger, l’homme des superpositions », dans Il était sept fois la Révolution

…de gauche à droite : Sheila Power, Pádraig de Brún, Paul Dirac, Eamon de Valera, Arthur Conway, Arthur Eddington, lui-même, et Albert J. McConnell, en 1942 lors d’un colloque à Dublin

Dublin_1942

Share Button

Il était sept fois la révolution

41cHc9K7F0L._SX297_BO1,204,203,200_

Certaines révolutions sont lentes et ne font pas couler de sang. Entre 1925 et 1935, la physique a connu un tel bouleversement : les atomes, ces petits grains de matière découverts quelques années plus tôt, n’obéissaient plus aux lois de la physique classique. Il fallait en inventer de nouvelles, penser autrement la matière. Une décennie d’effervescence créatrice, d’audace, de tourments, une décennie miraculeuse suffit à un petit nombre de physiciens, tous jeunes, pour fonder l’une des plus belles constructions intellectuelles de tous les temps : la physique quantique, celle de l’infiniment petit, sur laquelle s’appuie toujours la physique actuelle. Originaux, déterminés, attachants, pathétiques parfois, ces hommes ont en commun d’avoir été, chacun à sa façon, des génies. Dispersés aux quatre coins de l’Europe, à Cambridge, Copenhague, Vienne, Göttingen, Zurich ou Rome, ils se rencontraient régulièrement et s’écrivaient souvent. Leurs travaux se faisaient écho, suscitant l’admiration des uns, la critique des autres, jusqu’à ce qu’ils constituent un édifice formel cohérent. Ce livre rend hommage à quelques-uns de ces hommes remarquables : George Gamow, Albert Einstein, Paul Dirac, Ettore Majorana, Wolfgang Pauli, Paul Ehrenfest et Erwin Schrödinger.

Share Button

Paul Dirac (1902 – 1984)


Dirac

Qu’est-ce que la beauté des équations ?

« Si vous ne connaissez pas vous-même les mathématiques, je ne pourrai pas vous l’expliquer, car vous ne me comprendriez pas ; et si vous connaissez les mathématiques, alors vous savez déjà ce que j’entends pas là…»

“Toute loi physique doit être empreinte de beauté mathématique.”

Paul Adrien Maurice Dirac

Dirac le taciturne

Paul Adrien Maurice Dirac est, à son époque, particulièrement réputé pour son laconisme, son économie de mots presque déplacée. De nombreuses anecdotes ont été rapportées à ce sujet.

Il aurait redouté les interviews avec les journalistes. En 1931, en séjour à l’université du Wisconsin, Dirac répondit ainsi à un journaliste lors d’un entretien :

– Professeur Dirac, j’ai remarqué que vous aviez beaucoup d’initiales devant votre nom de famille : P, A, et M. Ont-elles une signification particulière ?
– Non.
– Vous voulez dire que je peux les interpréter à ma guise ?
– Oui.
– Par exemple, si je disais que les lettres P, A et M signifient Poincaré, Aloysius et Mussolini, cela vous irait ?
– Oui.
– Pouvez-vous me donner des nouvelles de vos recherches ?
– Non.
– Qu’est-ce que vous aimez le plus en Amérique ?
– Les pommes de terre.
– Allez-vous au cinéma ?
– Oui.
– Quand ?
– En 1920.
– ?
Après un long silence :
– Peut-être aussi en 1930.

Nul n’a jamais entendu Dirac faire une tirade, une remarque triviale, ce qui, d’un autre côté, donnait du poids à ses paroles. Indifférent au froid, à la pluie, à l’inconfort, à la mauvaise qualité de la nourriture, Dirac aurait pu travailler sur une île déserte. Malgré son comportement à la limite de l’autisme, il fut un chercheur prolifique.

Petit florilège des anecdotes liées à Paul Dirac dans cette chronique du Monde selon Etienne Klein :

Une formation d’ingénieur

Paul Dirac est né à Bristol le 8 août 1902. A 16 ans, il part étudier le génie électrique à l’université de Bristol. Mais une fois son diplôme en poche, n’arrivant pas à obtenir de poste, il se passionne pour la relativité générale d’Einstein. Ainsi, il demande, puis obtient une bourse pour étudier pendant deux ans les mathématiques à l’université de Bristol dans le but de mieux comprendre les aspects de cette théorie qui le fascine tant.

Ceci lui permet d’obtenir en 1923 un poste au Département de recherche scientifique et industrielle à Cambridge. Il se passionne pour le modèle de l’atome successivement perfectionné par Rutherford, Bohr, Sommerfeld, dont il refait les calculs. Il s’intéresse au modèle de l’électron proposé par Bohr et par Heisenberg.

Diracb

La beauté mathématique

Fasciné par la beauté des équations et du raisonnement mathématique, il pense qu’on peut parvenir à déterminer l’exactitude d’une théorie par son élégance mathématique. Son premier article, en 1925, met en évidence les différences entre formalisme de la physique quantique et de la physique classique, et lui assure une certaine notoriété. Il suit les grands débats scientifiques de l’époque sur les formalismes de la physique quantique mais ne s’y engage pas. En 1927, il commence la rédaction des Principes de la mécanique quantique, qui sera édité en 1930.

Complément : ce qui est mathématiquement beau est-il physiquement vrai ?

Anecdotes et efficacité des invariances en physique

L’équation de Dirac

Le grand problème de l’époque consistait en l’utilisation de l’équation de Schrödinger, dont les physiciens disposent depuis 1925. Le problème de cette équation, c’est qu’elle est adaptée aux particules les plus lentes seulement… Pendant une année entière, Dirac va travailler d’arrache-pied pour trouver une formulation adaptée aux particules les plus rapides et obtenir, en 1928, une équation d’onde relativiste pour l’électron, qui satisfait à la fois les principes de la physique quantique et les principes de la relativité. Il résout cette équation pour une particule libre, c’est-à-dire sans interaction avec d’autres particules : et obtient la probabilité de trouver l’électron dans un endroit dans un certain état.

Equation Dirac

A l’époque où monde scientifique est en pleine révolution, où les théories s’additionnent en ayant l’air de se contredire, Dirac a une confiance absolue en son équation. C’est grâce à lui que l’existence d’une antiparticule de l’électron, puis de l’antimatière comme écho à la matière, ont été acceptés par les autres physiciens. Il reçoit le prix Nobel en 1933 (qu’il voulait d’abord refuser).

De retour à Cambridge, à la chaire occupée par Isaac Newton, il se consacre aux problèmes fondamentaux de la physique. A sa retraite en 1970, il prend un poste de professeur en Floride et continue parallèlement à rédiger des articles. Il en publie soixante, et même un petit livre sur la relativité générale, jusqu’à sa mort en 1982.

Dirac et la prédiction de l’antimatière

Pour approfondir, voir chapitre « Paul Dirac ou la beauté silencieuse du monde », dans Il était sept fois la Révolution

Share Button

Peut-on voyager dans le temps ?

1:16 Que veut dire « voyager dans le temps » ?
5:37 Pourquoi la machine à remonter dans le temps n’existe-t-elle toujours pas ?
7:48 Les voyages dans le temps en science-fiction (Wells, Sprague de Camp, Kuttner et Moore, Grimwood, Benford, Anderson)
15:12 Le LHC peut-il remonter dans le temps ? Non ! L’invariance des lois physiques dans le temps et l’évolution des conditions physiques
21:01 Une remarque : deux temps distincts dans les histoires de voyages dans le temps (Alain)
24:14 Les théories physiques et notre façon de dire le temps
27:01 Découvertes philosophiques négatives dans le cas du temps ; la réversibilité des lois physiques
32:40 Le cours du temps et la flèche du temps
34:02 L’œuvre de Roman Opalka, ou la matérialisation du cours du temps en peinture
37:49 Le débat Newton (Clarke) – Leibniz : substantialisme vs relationnalisme ; son écho aujourd’hui
43:12 La métaphore du fleuve et ses « a priori clandestins »
45:29 La vitesse du temps, une absurdité ! Exemple du paradoxe des jumeaux de Langevin
53:55 L’ordre des phénomènes est-il lié au sujet qui les observe ou aux phénomènes eux-mêmes ? (Kant, Critique de la Raison pure)
57:00 Le principe de causalité et le choix d’un temps linéaire en physique
1:01:12 En relativité restreinte, la simultanéité n’est plus absolue
1:05:18 Le rayonnement cosmique, l’équation de Dirac et la prédiction de l’antimatière
1:11:53 Nous émettons en permanence des antiparticules, preuve que les voyages dans le temps sont impossibles !

Share Button

Comment la physique quantique est-elle née ? 3/6

Pourquoi les quanta sont-ils si troublants ? 3/6

2:03 Article d’Einstein (1905) : quantification de l’énergie, nature corpusculaire de la lumière
3:37 L’effet photoélectrique : description et interprétation
5:57 Interférences lumineuses, expérience de Young, nature ondulatoire de la lumière
8:33 Expérience de Young avec des électrons
12:29 Critère quantique, action (grandeur physique)
16:12 Quand doit-on faire appel à la physique quantique ? Exemples : montre, antenne de radio, atome d’hydrogène, noyau de l’atome ; systèmes macroscopiques quantiques
22:11 Percée théorique des années 20 : nature ni corpusculaire, ni ondulatoire des objets quantiques
26:03 Le principe de superposition : notion d’état physique et problème de sa représentation, remarque mathématique sur les espaces vectoriels et les vecteurs d’état 
34:32 Le principe de superposition comme principe fondamental de la physique quantique ; citation de Dirac
36:00 De l’espace physique à l’espace abstrait hilbertien : la question de l’interprétation de la physique quantique
38:08 Fonctions d’onde complexes, obtention de l’équation de Schrödinger à partir du principe de superposition (Feynman)
42:32 Application de l’équation de Schrödinger : le spectre de l’atome d’hydrogène, l’oscillateur harmonique
44:33 Principe d’indétermination d’Heisenberg (1927) : erreurs d’interprétation

Share Button

Comment la physique quantique est-elle née ? 4/6

Pourquoi les quanta sont-ils si troublants ? 4/6

0:00 Suite des erreurs d’interprétation du principe d’Heisenberg
2:59 Principe d’exclusion de Pauli (1925) pour les fermions (pas les bosons), analogie avec les comportements humains
7:04 L’effet tunnel (Gamow) : radioactivité alpha, métaphore du football
12:26 Validité de l’équation de Schrödinger
13:32 Equation de Dirac (1928), prédiction de l’antimatière (positron, observé par Anderson)
16:48 Le spin : description, image trompeuse, propriété naturelle des particules (Wigner)
20:25 Questions du public

Share Button

Comment la physique quantique est-elle née ? 5/6

Comment “interpréter” la physique quantique ? 5/6

0:00 Pourquoi y a-t-il nécessité d’interpréter la physique quantique ? Le problème de la mesure
1:39 Problème de la correspondance entre la représentation des états physiques et le monde lui-même
2:38 Statut de l’interprétation : dépendante ou indépendante du formalisme ?
4:03 Principe de superposition, source d’efficacité… et de problèmes
5:54 Expérience de pensée ; que signifie la superposition quantique ?
17:08 Rôle de la mesure : réduction du paquet d’onde (Heisenberg)
19:48 Argument des déterministes (Einstein, Schrödinger) : la mécanique quantique serait-elle incomplète ? Les variables cachées
21:53 Expérience de pensée avec une variable cachée : les probabilités sont-elles intrinsèques au formalisme ou au monde ?
24:08 Le chat de Schrödinger (1935)
28:55 Extension du problème à deux particules (Einstein) : non-séparabilité quantique
30:47 L’effet Rolling Stones
31:38 Expérience de pensée d’intrication quantique : le tout n’est pas les parties
34:40 Attitudes possibles : l’interprétation de Copenhague, le malaise constructiviste, théories alternatives (Wigner et la conscience, Everett et les mondes multiples)
38:47 Théorie de la décohérence
40:32 Rencontre BohrEinstein, évolution de leur relation
44:00 La physique quantique décrit-elle les « structures intimes du réel » ? Les objections d’Einstein
48:06 La réponse de Bohr au congrès Solvay de 1927
49:33 L’article EPR de 1935 (Einstein, Podolsky, Rosen) ; expérience de pensée : corrélations, états intriqués

Share Button

Petit voyage dans le monde des quanta

petit_voyage

En 1905 apparaissait une nouvelle physique qui allait révolutionner la façon de décrire la matière et ses interactions : la physique quantique. Avec elle s’ouvraient les portes d’un monde qui n’obéit pas aux lois de la physique classique : l’infi niment petit, avec ses atomes et ses particules. Elle obligea ses pères fondateurs, Einstein, Bohr, Heisenberg et Schrödinger notamment, à rediscuter le déterminisme et les critères de réalité de la physique classique, ainsi que la traditionnelle séparation entre observateur et objet observé. Pour la première fois dans l’histoire des sciences, une discipline exigeait même que soit mis en œuvre un travail d’interprétation afi n d’être comprise et appliquée : quelle sorte de réalité représente le formalisme quantique ? Aujourd’hui, quel crédit convient-il d’accorder aux diverses interprétations proposées depuis les années 1920 ? La physique quantique ne laisse pas d’intriguer, de fasciner, d’exaspérer parfois. Elle demeure pourtant méconnue, victime de stéréotypes : on l’invoque pour cautionner tel phénomène étrange, mais on néglige d’en décrire les principes fondamentaux. Quels sont ces principes qui trouvent des applications toujours plus fascinantes, du laser à la cryptographie quantique, en passant par la téléportation ? D’où provient cette incroyable efficacité de la physique quantique ?

Share Button

Solvay 1927

Retour au Congrès Solvay

Share Button

Le Congrès Solvay de 1927

Physicien théoricien (allemand, puis anglais), il est principalement connu pour son importante contribution à la physique quantique. Il a été le premier à donner au carré du module de la fonction d’onde la signification d’une densité de probabilité de présence.
Figure monumentale de la physique, monolithe écrasant, mythologie gelée à lui tout seul : que faudrait-il dire de plus ?

Qui était Albert Einstein ?
Qu’est-ce que la relativité restreinte ?
Qu’est-ce que la relativité générale ?
Ce physicien néérlandais s’est consacré à l’étude de la constitution de la matière et la nature de la lumière. Il est co- lauréat du prix Nobel de Physique de 1902.
Physicienne et chimiste franco-polonaise, elle découvrit avec son époux Pierre Curie deux nouveaux éléments radioactifs, le radium et le polonium. Cette découverte leur valut l’attribution du prix Nobel de 1903, en même temps qu’Henri Becquerel. En 1911, elle obtint le prix Nobel de chimie et fut la seule femme présente au congrès Solvay cette année-là.

Qui était Marie Curie ?
Physicien allemand qui fut le père du quantum. En 1900, il découvrit, à sa plus grande surprise et sans y croire vraiment, la quantification des échanges d’énergie entre la matière et la lumière. Le formalisme de la physique quantique, construit au cours des années 1920, en découlera.

Qui était Max Planck ?
Ingénieur des mines, il fut pendant toute sa carrière directeur associé du laboratoire de recherches General Electrics. Ses travaux sur la physique des nuages ont permis de mettre au point le déclenchement artificiel de la pluie ou “ensemencement des nuages”. Il est lauréat du prix Nobel de Chimie de 1932 pour ses travaux sur la chimie des surfaces.
Physicien français, auteur d’une célèbre théorie du magnétisme et connu pour avoir introduit en France la théorie de la relativité d’Einstein.
Professeur Suisse, spécialisé en relativité restreinte. A l’époque, il fournit la meilleurs vérification expérimentale de la variation de la masse d’un objet en fonction de sa vitesse.
Ce physicien fut le premier et le seul écossais à recevoir le prix Nobel de Physique. C’est lors d’une randonnée que, frappé par la beauté des nuages, il décida de reproduire ce phénomène en laboratoire. C’est ses recherches sur la physique des nuages qui lui valurent le prix Nobel en 1927.
Il fut lauréat du prix Nobel de physique de 1928. Cependant, la Fondation Nobel ne décerna pas de prix en Physique cette année-là, car les travaux des nominés ne satisfaisaient pas tous leurs critères… Son prix ne lui fut donc délivré qu’une année plus tard, en 1929.
Physicien danois, qui joua un rôle déterminant dans l’édification de la mécanique quantique, notamment en proposant en 1913 un modèle de l’atome qui n’était pas compatible avec les lois classiques. Il obtint le prix Nobel en 1922.

Qui était Niels Bohr ?
Physicien français qui obtint le prix Nobel en 1929 pour sa découverte de la nature ondulatoire des électrons.
Physicien américain, lauréat du prix Nobel en 1927 « pour la découverte de l’effet nommé en son nom qui a apporté en 1922 la preuve de l’aspect corpusculaire du rayonnement électromagnétique.
Physicien britannique, réputé pour son laconisme, il écrivit en 1928 l’équation qui lui permit de prédire deux ans plus tard l’existence de l’antimatière.

Qui était Paul Dirac ?
Physicien néerlandais, collaborateur de Niels Bohr, qui a participé au développement de la mécanique quantique et à ses applications aux propriétés optiques et magnétiques de la matière.
Physicien australien, il se forma à Cambridge et s’intéressa beaucoup aux structures des cristaux. Il reçut avec son père le prix Nobel de Physique en 1915 pour leurs travaux d’analyses cristallines aux rayons X.
Physicien danois, notamment connu pour ses travaux sur les écoulements moléculaires de gaz.
Formé à l’Université de Munich, il enseigna la physique en Allemagne avant d’émigrer aux Etats-Unis au moment de la seconde Guerre Mondiale. Ses travaux sur les moments dipolaires, les rayons X et les électrons dans les gaz lui valurent le prix Nobel de Chimie en 1936.
Héritier d’une grande lignée de scientifiques puisque son père et son grand-père occupèrent une chaire au Collège de France. Mobilisé pendant la première guerre mondiale dans le service de radiotélégraphie, c’est dans ce domaine qu’il se spécialisa et publia Science et théorie de l’information.
Physicien britannique, connu pour avoir expliqué le phénomène d’émission par effet de champs. Il collabora avec Paul Dirac sur la mécanique statistique appliquée aux naines blanches.
Physicien allemand qui fut l’un des fondateurs de la mécanique quantique. On lui doit notamment d’avoir énoncé en 1927 le principe d’indétermination qui demeure associé à son nom. Il fut lauréat du prix Nobel de physique en 1932.

Qui était Werner Heisenberg ?
Physicien théoricien autrichien qui réalisa des travaux prophétiques. Il envisagea notamment, en 1930, l’existence d’une nouvelle particule, le neutrino, qui fut avérée vingt-cinq ans plus tard.

Qui était Wolfgang Pauli ?
Physicien belge, qui a été professeur à l’Université de Gand.
Physicien autrichien, grand amoureux des femmes, qui conçut en 1925, lors d’une escapade dans les Grisons avec une jeune maîtresse, l’équation pilotant le comportement des électrons au sein des atomes.

Qui était Erwin Schrödinger ?
Commençant sa carrière en tant que simple instituteur, il fit des études supérieurs solitaires et laissa, malgré ses débuts tardifs, un nombre de travaux considérable ! Il était convaincu que l’univers est mathématisable. Homme très cultivé, ce fut également un excellent pianiste.
Ce chimiste Belge participa au sept premiers congrès Solvay. Il fut directeur de la section des sciences physiques et chimiques à l’Institut des Hautes Études scientifiques (créée pour offrir aux scientifiques une émulation intellectuelle « libre de toute contrainte pédagogique et administrative »). Il anima des conférences dont l’objet était de commenter un film sur la relativité d’Albert Einstein.

Physicien autrichien, ami proche d’Albert Einstein, il apporta des contributions majeures en thermodynamique et excella à créer des liens entre les plus grands physiciens, à provoquer des rencontres, mais son sens critique et son tempérament mélancolique le poussèrent au suicide.

Qui était Paul Ehrenfest ?
Correspondant de l’Académie des sciences dans le département de la physique générale, il mit en évidence la radioactivité du potassium et du rubidium dans leur état naturel. Il fut également pionnier dans l’étude du microscope éléctronique.
Inventeur génial, il accorda une énorme importance à l’expérimentation. Il acquit une renommée mondiale pour ses ascensions scientifiques dans la haute atmosphère et ses plongées dans les abysses sous-marines. C’est de lui dont s’est inspiré Hergé pour le personnage du professeur Tournesol, inventeur d’un prototype de sous-marin !

Cliquez sur un physicien pour obtenir une description et, pourquoi pas, un lien caché...

Share Button

Les Tactiques de Chronos

41cHc9K7F0L._SX297_BO1,204,203,200_

Le temps est une “chose” introuvable dont l’existence ne fait aucun doute. Une “chose” dont tout le monde parle mais que personne n’a jamais vue. Nous voyons, entendons, touchons, goûtons dans le temps, mais non le temps lui-même. Contre toute attente, Chronos est un planqué, un caméléon qu’il faut débusquer sous nos habitudes de langage et de perception. Pour le déjouer, il va falloir l’effeuiller peu à peu, le déshabiller, le distinguer de ses effets les plus sensibles : la durée, la mémoire, le mouvement, le devenir, la vitesse, la répétition… Parce que les horloges ne mesurent pas forcément du temps. Parce que le temps est toujours là alors qu’on dit qu’il s’écoule. Et qu’il existe indépendamment de ce qui survient, se transforme, vieillit et meurt. Aujourd’hui, le regard le plus audacieux et le plus déconcertant sur le temps, c’est la physique qui le porte. De Galilée à Einstein, puis de l’antimatière aux supercordes, elle n’a cessé d’approfondir la question jusqu’à ouvrir des perspectives qui donnent le vertige : le temps a-t-il précédé l’Univers ? Comment s’est-il mis en route ? Pourrait-il inverser son cours ? l’interrompre puis le reprendre ? Existerait-il plusieurs temps en même temps ? Au bout du compte, le temps pourrait ne plus du tout se ressembler.

Share Button

Comment la physique quantique est-elle née ? 2/6

Comment la physique quantique est-elle née ? 2/6

2:00 Modèle de l’atome de Rutherford (1911), analogie avec le système planétaire, rayonnement synchrotron
7:15 Modèle de Bohr (1913), saut quantique, injection de h dans la matière
12:13 Influence de la relativité générale à l’époque (1916)
16:04 Pères fondateurs de la Physique quantique, intérêt pour l’atome, génie européen
20:02 Anecdote sur la découverte de l’équation de Schrödinger (1925), contributions d’Ehrenfest, de Pauli, de Gamow, de Dirac
23:48 Ettore Majorana, son génie, sa disparition
26:54 Questions du public

Share Button

Le facteur temps ne sonne jamais deux fois

facteur_temps

Chose déroutante, décidément, que le temps. Nous en parlons comme d’une notion familière, évidente, voire domestique, “gérable”. Nous parlons même d’un “temps réel” pour évoquer l’instantanéité, c’est-à-dire le temps sur lequel nous n’avons aucune prise. Les physiciens, eux, l’ont couplé à l’espace, en ont fait une variable mathématique, abstraite, qu’ils intègrent dans des théories audacieuses, spectaculaires, mais si complexes qu’elles sont difficiles à traduire en langage courant. Certains disent même avoir identifié le moteur du temps. Quant aux philosophes, ils ne cessent depuis plus de deux millénaires de soumettre le temps au questionnement : est-il une sorte d’entité primitive, originaire, qui ne dériverait que d’elle-même ? Ou procéderait-il au contraire d’une ou plusieurs autres entités, plus fondamentales : la relation (de cause à effet, par exemple) ? Le temps s’écoule-t-il de lui-même ou a-t-il besoin des événements qui s’y déroulent pour passer ? S’apparente-t-il au devenir, au changement, au mouvement ? Et au fait, le temps a-t-il eu un commencement ? Aucune discipline ne parvient à épuiser, à elle seule, la question du temps. C’est pourquoi nous avons croisé les regards des philosophes avec ceux des physiciens. Et que se passe-t-il ? Sans aucun doute de belles et troublantes choses…

Share Button

Questionnaire : qui êtes-vous, Etienne Klein ?

Etienne Klein

De toutes les personnes que vous avez rencontrées dans votre vie, lesquelles vous ont le plus marqué ?

Victor Weisskopf et Bernard d’Espagnat.

Pourquoi ?

Victor Weisskopf était prof au CERN, il donnait des cours aux étudiants qui venaient l’été. C’était un personnage ! Il avait été le thésard de Pauli, il avait collaboré avec Einstein, il parlait sept langues… il avait un charisme extraordinaire et une façon de faire cours très différente des façons de faire cours en France. C’était à la fois un humaniste et un grand physicien, un profil qu’on ne fabrique plus vraiment aujourd’hui. Il m’a vraiment scotché ce gars-là !
Et d’Espagnat, parce qu’on m’a offert son livre quand j’étais à Centrale, celui qui s’intitule A la recherche du réel, où il parlait des problèmes d’interprétation de la mécanique quantique et laissait entendre que la physique quantique pouvait avoir un impact sur la façon de penser le réel philosophiquement. Ensuite on s’est rencontrés et on a écrit un bouquin ensemble… il a été une sorte de figure tutélaire.

Quel(s) événement(s) vous a/ont conduit vers la physique et vers la vulgarisation scientifique ?

L’événement vers la physique, c’est un stage au CERN quand j’étais à Centrale en deuxième année. Vers la vulgarisation : c’est lorsque j’ai écrit mon premier livre, quand j’avais 32 ans. Quand j’ai écrit ce livre, je me disais que les paradoxes étaient un bon moyen pédagogique pour apprendre la physique contemporaine.

Quelles sont les personnalités scientifiques du passé que vous admirez le plus ?

Je dirais Galilée, Boltzmann, Riemann, Einstein évidemment, et Majorana d’un certaine façon. Quand on voit ce qu’a fait Riemann en maths, mort à 39 ans, on ne comprend pas très bien comment au milieu du XIXe siècle il a pu produire autant. Ce sont des figures classiques, mais elles ne le sont pas par hasard !

Quels sont les livres de science qui vous ont le plus marqué ?

A la recherche du réel de d’Espagnat bien sûr, mais avant il y avait eu Patience dans l’azur d’Hubert Reeves. C’est quand même extraordinaire : ce livre a été refusé par 30 éditeurs ! Il a été accepté par le Seuil, et ça a été un best-seller absolu. Il a démontré qu’on pouvait vendre des livres sur la science. C’est là que j’ai appris que les atomes n’ont pas toujours été là, qu’il y a eu une nucléosynthèse… Quand j’ai lu ce livre j’ai découvert – pour le coup – un univers.

Votre citation préférée sur le thème du temps ?

C’est peut-être celle de Giono : « Le temps, c’est ce qui passe quand rien ne se passe ».

Quel est votre mythe préféré sur l’origine de l’univers ?

Le mythe de Kronos, Gaïa et Ouranos, avec l’idée que le temps physique est né d’une émancipation d’un titan par rapport à son père : quand Kronos engendre Chronos. J’y ai consacré un chapitre dans Les tactiques de Chronos.

Sur la photo du Congrès Solvay de 1927, quel physicien (ou physicienne !) vous fascine le plus ?

Je pense que c’est Dirac. Il est fascinant dans le sens où il est insondable. Il a écrit un livre en 1928 qui s’appelle Principles of quantum mechanics qui est le premier vrai livre de physique quantique, absolument incroyable, où on trouve l’équation de Dirac à la fin. Il avait 25 ans ! On se fait une image de lui par toute la légende qui l’entoure, qui est en fait contredite par une conférence qu’il a donné en 64, avec une parole très fluide et beaucoup d’aisance. C’est un personnage très complexe.

[conférence de Paul Dirac de 1975 disponible ici.]

De toute façon, j’ai une admiration pour les physiciens qui ont prédit l’existence d’objets qui existent. Et la prédiction de l’antimatière, c’est quand même quelque chose d’absolument incroyable [prédiction issue de l’interprétation de l’équation de Dirac].

Ce que vous aimez chez les gens ?

Je dirais que c’est la capacité à être parfois dans l’humour. Pas tout le temps, mais parfois.

Ce que vous n’aimez pas chez les gens ?

Je sais pas, j’aime bien les gens… Je dirais l’arrogance.

Le principal trait de votre caractère ?

A votre avis ?

Votre principale qualité ?

Les gens disent que je suis un bon père. Pour le reste…

Formulé autrement : si vous deviez renaître, quelle qualité garderiez-vous ?

Si je devais renaître, je pense que je travaillerais plus l’introspection, que j’ai un peu délaissée car, la physique, ça écarte un peu de soi-même. Disons qu’il y a beaucoup de gens qui vivent comme si l’univers n’existait pas, ils oublient qu’il y a un ciel, des étoiles… Chez les physiciens il y a parfois l’excès inverse, comme si l’humanité n’était rien.

Votre principal défaut ?

C’est peut-être l’incapacité à me poser vraiment, pour écouter. C’est le fait de ne pas être assez disponible, de ne pas accepter de poser les valises pour un bon moment.

Votre occupation préférée ?

J’aime bien travailler – dans le calme. J’aime bien faire du sport. Je n’aime pas être en salle à pédaler sur des trucs, je préfère les sports je dirais… d’agonie. C’est même pas des sports : c’est sans arbitre, sans terrain, sans règle, des sports où si on veut on peut terminer à bout de force.

Ultra-trail du Mont-Blanc ou diagonale des fous ?

Je ne connais que l’Ultra-trail du Mont-Blanc, je n’ai jamais fait la diagonale des fous. Il paraît que c’est à peu près pareil sauf que les températures sont différentes. Le terrain est différent mais le dénivelé est à peu près le même. La diagonale des fous, je la ferai peut-être un jour. Mais j’ai un tel attachement à Chamonix et au Mont-Blanc que si je devais faire un trail ailleurs que là, j’aurais l’impression d’être dans l’adultère.

Vos auteurs favoris en prose ?

Là, pour le coup, il y en a vraiment beaucoup…

Ah, il faut choisir.

Deux qui me viennent comme ça : Paul Valéry (en prose) et Bachelard.

Vos poètes préférés ?

Ce n’est pas Valéry, justement. Il y a évidemment Rimbaud, et… et William Blake. C’est en lisant Bachelard que j’ai découvert Blake : Bachelard parle d’un poète absolu qui arrive a nouer les mots de telle façon que ça fait naître de nouvelles images. Les mots créent une sorte de monde parallèle qui fait sens.

Vos compositeurs préférés ?

Bah les Rolling Stones.

Cela vient après…

Alors euh… Comme Einstein, Mozart et Bach.

Alors, Beatles ou Rolling Stones ?

Bah non mais… Les Beatles ça n’existe pas. Il y a une chanson des Stones qui s’appelle We love you dans laquelle ils ont singé les Beatles. Ils ont fait une musique un peu comme les Beatles, mais c’est bien meilleur que les Beatles. Je peux vous la faire écouter…

Votre chanson préférée des Rolling Stones ?

(Long soupir…) Ca dépend du contexte. Pendant l’Ultra-trail, la nuit, quand il faut se taper 2000m de dénivelé etc, je mets des chansons qui boostent sans être agressives, comme Too Tough. Sinon, intrinsèquement, une chanson des Stones qui est assez remarquable c’est Gimme Shelter, à la fois la musique et la composition, mais aussi les paroles et le contexte. Je pense que c’est une chanson qui a fait comprendre à beaucoup de gens, notamment aux Américains, ce que ça veut dire : être sous un bombardement.

Vos peintres préférés ?

Hmm… Je ne sais pas répondre. En fait je n’ai pas des peintres préférés, mais des tableaux préférés. Mais celui qui est le plus riche et même supérieur à Picasso dans la variété c’est Georges Braque. Il a été productif à tous les âges de sa vie, il a inventé des styles et il a été précurseur tout au long de sa vie y compris en étant rupture avec lui-même. C’est assez fascinant.

Votre devise ?

On a le droit à combien de devises ?

Une.

Tout finira par s’arranger, même mal.

Votre rêve ?

Mon rêve ? C’est un rêve impossible, mais j’aimerais bien faire le Tour de France. Si on me disait : tu as le droit pendant un mois de devenir quelqu’un d’autre et de faire autre chose, j’aimerais avoir 28 ans et faire le Tour de France, peu importe la place. Enfin évidemment, sans être largué, sinon c’est l’enfer. Gagner une étape, ce serait ajouter un rêve au rêve !

741_etienne-klein-libido-sciendi_6845

Share Button

Dirac aux côtés de…

…Werner Heisenberg

dirac_heisenberg

…Toujours Werner Heisenberg

dirheisen

…Encore Werner Heisenberg, ainsi que Dmitri Ivanenko (à gauche)

8dd283c73b_29864_ivanenko_G  Sardanashvily

…Encore et toujours Werner Heisenberg, ainsi que Frits Zernicke (à gauche), en 1959

1959

…de gauche à droite : Sheila Power, Pádraig de Brún, Paul Dirac, Eamon de Valera, Arthur Conway, Arthur Eddington, Erwin Schrödinger, et Albert J. McConnell, en 1942 lors d’un colloque à Dublin

Dublin_1942

…Wolfgang Pauli, en 1938

Dirac-and-Pauli-CERN1

…Wolfgang Pauli et Rudolf Peierls, en 1953 à Birmingham

dirac_pauli

Share Button

Avec l’aimable contribution de…

Luc Blanchet

Blanchet

Luc Blanchet est un spécialiste reconnu de la théorie de la relativité générale. Il a été chargé de recherches au Département d’Astrophysique Relativiste et de Cosmologie (DARC) à l’Observatoire de Meudon, et est depuis 2008 Directeur de Recherche de 1ère classe au Groupe de Gravitation et Cosmologie (GReCO) à l’Institut d’Astrophysique de Paris

Contributions :

  • Un cours de relativité générale sous forme de polycopié : idéal pour ceux qui souhaitent découvrir plus en détail les concepts de la théorie, et pour ceux qui veulent se familiariser avec son formalisme mathématique.

    Cours de relativité générale
Thibault Damour

Damour

Thibault Damour est professeur de physique théorique à l’Institut des hautes études scientifiques (IHES) et membre de l’Académie des sciences. Il est reconnu pour ses travaux en cosmologie sur les trous noirs, les pulsars et les ondes gravitationnelles. Il a notamment reçu la prestigieuse médaille Einstein, en 1996.

Contribution :

  • Un extrait de la bande dessinée Le Mystère du monde quantique (2016) parue chez Dargaud, qu’il a co-écrite avec Mathieu Burniat. Aux côtés de Bob et de son fidèle chien Rick, partez à la découverte du monde quantique !

    Le Mystère du monde quantique
Jean Eisenstaedt

Eisenstaedt

Jean Eisenstaedt est directeur de recherche émérite à l’Observatoire de Paris. Historien de la physique, il est notamment célèbre pour ses travaux sur la relativité générale, dont il est un spécialiste reconnu.

Contributions :

Franck Laloë

Laloe

Spécialiste de la mécanique quantique, Franck Laloë est chercheur au CNRS et membre du prestigieux laboratoire Kastler-Brossel. Il est notamment à l’origine de HAL, plateforme d’archive ouverte en ligne.

Contributions :

  • Un polycopié de mécanique quantique (sans gros calculs) dont voici le sommaire :

    Sommaire


    Comprenons-nous vraiment la mécanique quantique ?

    1. Introduction, historique
    1.1 Trois étapes
    1.1.1 La « préhistoire »
    1.1.2 La période ondulatoire
    1.1.3 L’école de Copenhague
    1.2 Le statut du vecteur d’état

    2. Des difficultés, des paradoxes
    2.1 La récurrence infinie de Von Neumann
    2.2 L’ami de Wigner, le chat de Schrödinger
    2.3 De mauvais arguments

    3. Einstein, Podolsky et Rosen
    3.1 Des haricots et des gènes
    3.2 Le théorème EPR

    4. Bell, GHZ, Hardy
    4.1 Inégalités de Bell
    4.1.1 Démonstration
    4.1.2 Généralité du théorème
    4.2 Egalités de GHZ
    4.3 Impossibilités de Hardy

    5. Où en sommes-nous ?
    5.1 Les failles
    5.2 La localité, la contrafactualité
    5.3 Téléportation et cryptographie quantiques
    5.4 Les états « par tout ou rien », la décohérence
    5.4.1 Les états par tout ou rien
    5.4.2 La décohérence
    5.5 Les alternatives
    5.5.1 Les variables supplémentaires
    5.5.2 Evacuation du postulat de réduction du paquet d’onde
    5.5.3 Histoires décohérentes

    Appendices
    I. Une tentative de construction d’une théorie quantique « séparable » (théorie non déterministe mais locale)
    II. Démonstrations de relations
    III. Calcul de la probabilité maximale pour un état de Hardy

  • Un autre polycopié de mécanique quantique (en anglais), plus complet que le précédent et qui présente notamment les différentes interprétations de la physique quantique

Ces deux documents PDF sont des versions préliminaires du livre Comprenons-nous vraiment la mécanique quantique ?, idéal pour ceux qui souhaitent approfondir le sujet et comprendre le formalisme mathématique de la mécanique quantique.

Dominique Lecourt

Lecourt

Agrégé de philosophie, Dominique Lecourt est professeur de philosophie à l’université Paris Diderot et directeur général de l’Institut Diderot. Il est l’auteur de nombreux ouvrages de réflexion sur la science et son impact sur la société.

Contribution :

Jean-Marc Lévy-Leblond

Levy-Leblond

Jean-Marc Lévy-Leblond est professeur émérite à l’université de Nice. Il dirige la revue Alliage qu’il a lui-même fondée ainsi que la collection « Science ouverte » au Seuil. Spécialiste de physique et d’épistémologie, il aime surtout se définir comme « critique de science » et a écrit de nombreux essais dans ce sens.

Contribution :

  • un texte de réflexion sur les rapports entre science et langage intitulé :

    La science au défi de la langue

    où il réfute les idées de langage propre à la science et de langue parfaitement adaptée à la science (en particulier l’anglais), et où il souligne la nécessité actuelle d’une réflexion critique sur le langage scientifique.

Jean-Michel Raimond

raimond

Jean-Michel Raimond est professeur de physique à l’Université Pierre et Marie Curie et directeur du département de physique de l’ENS au LKB. Ses travaux portent essentiellement sur l’électrodynamique quantique en cavité et les puces à atomes supraconductrices.

Contribution :

Hubert Reeves

Reeves

Passionné d’astrophysique, Hubert Reeves s’est fait connaître du grand public dès les années 70 grâce à ses nombreux ouvrages de vulgarisation scientifique. Egalement militant écologiste, il est actuellement le président d’honneur de l’association « Humanité et Biodiversité ».

Contribution :

  • De l’histoire de l’univers à l’histoire de l’homme : l’homme va-t-il gâcher la belle histoire de l’apparition de la vie sur terre en courant à sa propre perte, maintenant qu’il domine et dégrade la nature ? Voici la vision du monde et de l’humanité d’Hubert Reeves dans ce texte intitulé :

    L’avenir de la vie sur terre
Carlo Rovelli

Rovelli

Physicien et historien des sciences, Carlo Rovelli est l’un des pères fondateurs de la théorie de la gravitation quantique à boucles, qui vise à établir un cadre formel permettant de décrire la force gravitationnelle à très petite échelle, et qui opère une refonte complète des concepts d’espace et de temps. Il dirige le groupe de recherche en gravité quantique au Centre de physique théorique de Marseille-Luminy.

Contribution :

  • Un extrait de son ouvrage Sept brèves leçons de physique, paru aux éditions Odile Jacob, extrait qui présente les grandes idées de la théorie de la gravitation quantique à boucles et qui explique en particulier comment cette théorie décrit le temps.

    La gravitation quantique à boucles

    Rovelli

    Un axe de recherche majeur centré sur la tentative de résoudre le problème […] est la gravité quantique « à boucles », développée par une patrouille de chercheurs disséminés dans plusieurs pays du monde, dont la France est un des premiers.La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter. C’est une tentative prudente car elle n’utilise pas d’autres hypothèses que ces deux théories mêmes, opportunément réécrites jusqu’à les rendre compatibles. Mais ses conséquences sont radicales : une modification profonde de la structure de la réalité.
    L’idée est simple. La relativité générale nous a appris que l’espace n’est pas une boîte inerte, mais quelque chose de dynamique : un champ, une espèce d’immense mollusque mouvant dans lequel nous sommes plongés, qui peut se comprimer et se tordre. La mécanique quantique, d’autre part, nous apprend que chaque champ est fait de quanta : il a une structure fine granulaire. Il s’ensuit que l’espace physique est lui aussi « fait de quanta ».
    La prédiction centrale de la théorie des boucles est donc que l’espace physique n’est pas continu, il n’est pas divisible à l’infini, il est formé de grains, d’ « atomes d’espace ». Ces grains sont très petits : un milliard de milliards de fois plus petits que le plus petit des noyaux atomiques. Des millions de milliards de fois plus petits que la plus petite distance qu’arrivent à sonder nos instruments les plus puissants, comme le grand accélérateur de particules de Genève.
    La théorie décrit ces atomes d’espace de façon mathématique et fixe les équations qui déterminent leur évolution. On les appelle boucles, ou anneaux, parce que chaque atome d’espace n’est pas isolé, mais relié à d’autres, formant un réseau de relations qui tisse la trame de l’espace physique comme des anneaux de fer tissent une cotte de mailles.
    Où se trouvent ces quanta d’espace ? Nulle part. Ils ne sont pas dans l’espace, puisqu’ils constituent eux-mêmes l’espace. L’espace est créé par l’interaction mutuelle des quanta de gravité individuels. Encore une fois, le monde semble être relation avant d’être un ensemble d’objets.
    Mais c’est la deuxième conséquence de la théorie qui est la plus extrême. De même que disparaît l’idée de l’espace continu qui contient les choses, de même disparaît l’idée d’un « temps » continu élémentaire et primitif qui s’écoule indépendamment des choses. Les équations qui décrivent des grains d’espace et de matière ne comportent plus la variable temps.
    Cela ne signifie pas que tout est immobile et qu’il n’existe pas de changement. Au contraire, cela signifie que le changement est partout, mais que les processus élémentaires ne peuvent pas être ordonnés dans une succession d’instants commune. A la très petite échelle des quanta d’espace, la danse de la nature ne s'effectue pas au rythme de la baguette d'un seul chef d'orchestre, d'un seul temps : chaque processus danse indépendamment de ses voisins, à son propre rythme. L’écoulement du temps est interne au monde, il naît dans le monde même, à partir des relations entre des événements quantiques qui sont le monde et qui sont eux-mêmes la source du temps.

    Extrait de Sept brèves leçons de physique

Cédric Villani

villani

Mathématicien lauréat de la prestigieuse médaille Fields en 2010, Cédric Villani est directeur de l'Institut Henri Poincaré (IHES) et professeur à l'Université de Lyon. Ses travaux portent essentiellement sur les équations d'évolution, la mécanique des fluides, la mécanique statistique et la théorie des probabilités. Il est également l'auteur d'ouvrages destinés au grand public, comme Théorème vivant paru en 2012.

Contribution :

  • Un extrait de la bande dessinée :
    Les Rêveurs lunaires

    qui raconte l'épisode de Farm Hall, cette maison mise sur écoute par les Alliés après la guerre afin de savoir où en étaient les Allemands dans leurs recherches sur la bombe atomique...
Share Button

Polycopiés de mécanique quantique

Franck Laloë

Laloe

Spécialiste de la mécanique quantique, Franck Laloë est chercheur au CNRS et membre du prestigieux laboratoire Kastler-Brossel. Il est notamment à l’origine de HAL, plateforme d’archive ouverte en ligne.

Pour compléter notre présentation de la mécanique quantique, Franck Laloë vous propose :

  • Un polycopié de mécanique quantique (sans gros calculs) dont voici le sommaire :

    Sommaire


    Comprenons-nous vraiment la mécanique quantique ?

    1. Introduction, historique
    1.1 Trois étapes
    1.1.1 La « préhistoire »
    1.1.2 La période ondulatoire
    1.1.3 L’école de Copenhague
    1.2 Le statut du vecteur d’état

    2. Des difficultés, des paradoxes
    2.1 La récurrence infinie de Von Neumann
    2.2 L’ami de Wigner, le chat de Schrödinger
    2.3 De mauvais arguments

    3. Einstein, Podolsky et Rosen
    3.1 Des haricots et des gènes
    3.2 Le théorème EPR

    4. Bell, GHZ, Hardy
    4.1 Inégalités de Bell
    4.1.1 Démonstration
    4.1.2 Généralité du théorème
    4.2 Egalités de GHZ
    4.3 Impossibilités de Hardy

    5. Où en sommes-nous ?
    5.1 Les failles
    5.2 La localité, la contrafactualité
    5.3 Téléportation et cryptographie quantiques
    5.4 Les états « par tout ou rien », la décohérence
    5.4.1 Les états par tout ou rien
    5.4.2 La décohérence
    5.5 Les alternatives
    5.5.1 Les variables supplémentaires
    5.5.2 Evacuation du postulat de réduction du paquet d’onde
    5.5.3 Histoires décohérentes

    Appendices
    I. Une tentative de construction d’une théorie quantique « séparable » (théorie non déterministe mais locale)
    II. Démonstrations de relations
    III. Calcul de la probabilité maximale pour un état de Hardy

  • Un autre polycopié de mécanique quantique (en anglais), plus complet que le précédent et qui présente notamment les différentes interprétations de la physique quantique

Ces deux documents PDF sont des versions préliminaires du livre Comprenons-nous vraiment la mécanique quantique ?, idéal pour ceux qui souhaitent approfondir le sujet et comprendre le formalisme mathématique de la mécanique quantique.

Share Button

En cherchant Majorana

en_cherchant_majorana

«Ettore Majorana m’est «tombé dessus» lorsque je commençais mes études de physique. Ce théoricien fulgurant a surgi dans l’Italie des années vingt, au moment où la physique venait d’accomplir sa révolution quantique et de découvrir l’atome. En 1937, il publia même un article prophétique dans lequel il envisage l’existence de particules d’un genre nouveau, qui pourraient résoudre la grande énigme de la matière noire. Ce jeune homme maigre, aux yeux sombres et incandescents, était considéré comme un génie de la trempe de Galilée. Mais de tels dons ont leur contrepoids : Majorana ne savait pas vivre parmi les hommes, et c’est la pente pessimiste et tourmentée de son âme qui finit par l’emporter. A l’âge de trente et un ans, il décida de disparaître et le fit savoir. Une nuit de mars 1938, il embarqua sur un navire qui effectuait la liaison Naples-Palerme et se volatilisa.» Etienne Klein est parti sur les traces de cette comète, à Catane, Rome, Naples et Palerme. Il a rencontré des membres de la famille Majorana, fouillé les archives, analysé l’ouvre, avec le secret espoir que ce scientifique romanesque cesserait enfin de se dérober.

Share Button

Le temps, son cours et sa flèche

1:29 Introduction : flèche d’Eros et flèche du temps
2:44 Citations sur le temps ; le titan Kronos
5:36 Problème de la définition du temps (Heidegger) ; expression du temps dans le langage
10:00 Débat entre Parménide et Héraclite
12:35 Remarque d’Aristote sur la réalité du temps
13:34 Le temps, entre persistance et changement
14:46 La mathématisation du temps par Galilée
16:17 La physique impuissante à relier temps physique et temps psychologique
22:20 La représentation du temps dans l’espace
24:12 Le choix d’un temps linéaire et le principe de causalité
27:17 Le principe de causalité aujourd’hui en physique : en mécanique classique, en physique quantique, en relativité restreinte et générale, en théorie quantique des champs
35:19 Prédiction de l’antimatière par Dirac
36:38 L’invariance CPT : opérations conjugaison de charge, parité et renversement du temps
40:16 Le temps, continu ou discontinu ?
43:56 Distinction entre cours et flèche du temps
47:54 Comment expliquer l’irréversibilité macroscopique à partir de lois réversibles ? Une réponse possible : l’entropie et les lois statistiques
51:35 Problèmes induits par la flèche du temps en relativité et en physique quantique
53:28 Violations de la parité et de la conjugaison de charge ; les kaons neutres (expérience CPLEAR), l’expérience BABAR
1:00:13 Pas d’unité théorique autour du concept de temps
1:02:15 Questions du public

Share Button

Les secrets de la matière

secrets_matiere

Des particules élémentaires à l’Univers, du big bang aux accélérateurs de particules, en passant par la radioactivité ou l’énergie atomique, Etienne Klein nous guide dans un fascinant voyage au coeur de la matière. Comment expliquer que des matériaux aussi différents que le fer, l’eau ou l’oxygène soient composés de particules identiques ? Qu’est-ce que la radioactivité ? Quels processus ont généré l’Univers tel que nous le connaissons aujourd’hui ? En répondant à ces questions, l’auteur nous fait comprendre les lois qui s’exercent au sein de l’atome aussi bien que celles qui régissent le mouvement des galaxies.

Share Button

Niels Bohr (1885 – 1962)


Bohr


“La prédiction est un exercice très compliqué, spécialement quand elle concerne le futur.”

Débat entre Niels Bohr et Albert Einstein à propos de la réalité de la physique quantique :
« Dieu ne joue pas aux dés ! »
« Qui êtes-vous, Einstein, pour dire à Dieu ce qu’il doit faire ? ».

Niels Bohr


Formation, découvertes et prix Nobel

Niels Bohr naît le 7 octobre 1885 à Copenhague. C’est un enfant assez sportif : il joue au football, mais néanmoins moins bien que son frère cadet, mathématicien et également très sportif puisqu’il représente le Danemark aux Jeux Olympiques de 1908.
Il entre à l’université de Copenhague en 1903 où, seulement 3 ans plus tard, il obtient une récompense de l’académie royale danoise des sciences et des lettres. Il rencontre ensuite les fondateurs des premiers modèles de l’atome, Thomson et Rutherford, et part travailler avec ce dernier en Angleterre. Il publie assez rapidement un modèle de l’atome sous la forme d’un noyau autour duquel gravitent des électrons sur plusieurs couches, en ayant la possibilité de changer de couche en émettant un quantum d’énergie (le photon). Quelques années plus tard, il obtient une équation qui permet de calculer les niveaux d’énergie possibles pour l’électron au sein de l’atome d’hydrogène.

Il obtient le prix Nobel de physique en 1922 pour ses recherches concernant la structure des atomes et les radiations qu’ils peuvent émettre. Bohr, scientifique très apprécié de ses compatriotes danois, reçoit en cette occasion un cadeau de la brasserie Carlsberg. Il s’agit d’une maison située près de la brasserie, qui a un robinet de bière qui s’y approvisionnait directement!

Positionnement face au nucléaire

A la fin des années 30, il continue à concentrer ses recherches sur le noyau atomique. Cependant, le climat hostile en Europe et l’occupation du Danemark le contraignent à s’échapper en Suède, en raison des origines juives de sa mère. Il arrive clandestinement en Angleterre, puis aux Etats-Unis, où il travaille pour le projet Manhattan. Après la guerre, il revient dans son pays où il œuvre pour une utilisation pacifique de l’énergie nucléaire. Il participe notamment à la création du CERN.
Il meurt à Copenhague en 1962.

Anecdote

Share Button

Conférences de Martin Heidegger


heidegger

Pour agrémenter cette page consacrée à l’innovation et au progrès, il semble opportun de proposer ici deux résumés des conférences de Martin Heidegger intitulées :

La question de la technique


heidegger

Le texte suivant retrace le cheminement des idées essentielles de la conférence « La question de la technique » de Martin Heidegger, puisée dans « Essais et conférences ».

Dès les premières lignes, Heidegger annonce l’objectif de cette conférence : ouvrir notre être à l’essence de la technique, essence qui n’a en elle-même rien de technique. Dès lors, nous pourrons disposer d’un rapport libre à la technique ; en effet, aujourd’hui, nous sommes aveugles à l’essence de la technique, et cet aveuglement nous prive de liberté.

Qu’est-ce que la technique ? Heidegger en donne une définition : la production de moyens en vue de certaines fins. Mais cette définition, tirée de l’observation, ne renvoie qu’à une conception purement instrumentale de la technique : elle ne donne pas l’essence de la technique, ce qui la caractérise fondamentalement au-delà des considérations matérielles. Pour trouver quelle est cette essence, Heidegger propose de se demander : qu’est-ce que le caractère instrumental lui-même ?

Pour le comprendre, il faut revenir à la notion de cause entendue dans un sens plus large que la simple relation de cause à effet. Ainsi Aristote distinguait quatre types de causes :

  • la cause matérielle : la matière qui sert à la fabrication d’une chose

  • la cause formelle : la définition de la chose à partir de son essence, de sa « forme », et donc en particulier de son aspect, qui permet de la reconnaître (formes géométriques, couleurs, dimensions…)

  • la cause finale : la raison d’être de la chose, en vue de quelle fin on l’a produite

  • et la cause efficiente : ce qui produit la chose, par exemple l’artisan.

Heidegger propose de dépasser ces quatre causes aristotéliciennes en s’interrogeant sur ce qui les unit fondamentalement : qu’est-ce qui les rend si solidaires entre elles, si interdépendantes ? La réponse est qu’elles constituent les différents modes, les différentes déclinaisons d’un même acte qu’Heidegger appelle « l’acte dont on répond ».

Tout cela s’éclaircit avec l’exemple d’une coupe en argent. La coupe est redevable envers l’argent (sa cause matérielle), envers l’aspect qu’a pris l’argent transformé en coupe et non en agrafe ou en anneau (sa cause formelle), envers ce qui la détermine à être une coupe (sa cause finale), et envers l’orfèvre, mais non pas en tant que sa cause efficiente. Ici Heidegger se démarque de la lecture habituelle d’Aristote en ne réduisant pas la cause efficiente à un simple acte de fabrication. En effet, pour Heidegger, l’orfèvre en plus de fabriquer la coupe rassemble les quatre modes de l’« acte dont on répond », qui correspondent aux quatre causes d’Aristote et qui entrent en jeu dans la production de la coupe. Cet « acte dont on répond » est donc ce qui conduit quelque chose à passer du non-être à l’être.

En résumé : l’apparition d’une chose dans le monde dépend de la synthèse des quatre causes d’Aristote, synthèse opérée par celui ou celle qui produit et qui constitue pour la chose l’acte dont elle répond, à qui elle doit son passage du néant à la présence. Nous parlons d’orfèvre ou d’artisan, mais Heidegger précise bien qu’il entend le terme « production » dans un sens plus large : en particulier, la nature elle aussi produit, en permettant par exemple à la fleur de s’ouvrir.

Que signifie donc « produire » pour Heidegger ? C’est ce qu’il appelle le dévoilement, qui rassemble en lui les quatre modes du devenir. La technique n’a donc pas qu’un aspect purement matériel : elle est production dans le sens d’un dévoilement, puisqu’elle permet de faire venir au monde ce qui était en retrait dans le non-être. Nous avons trouvé là l’essence de la technique, que nous recherchions : le dévoilement. Avant de lire la suite, assurez-vous d’avoir bien saisi ce qu’Heidegger entend par dévoilement : encore une fois, il s’agit de la réunion (qui peut être opérée par un homme) des quatre causes d’Aristote permettant à une chose de passer du non-être à l’être.

MAIS – et c’est certainement là le point crucial de la pensée d’Heidegger sur la technique – l’essence de la technique que nous venons de mettre en lumière (le dévoilement) n’est pas l’essence de la technique moderne ! Car l’enjeu de la technique moderne n’est pas de produire, mais de provoquer, son objectif étant, à partir d’un calcul rationnel qui transforme la nature en disponibilité infinie, de mettre à disposition les machineries et autres dispositifs qui pourront exploiter cette disponibilité, par exemple extraire toute l’énergie possible de la nature afin de l’exploiter ou de la stocker.)

[Remarque non présente dans le texte : pour en revenir à la causalité, on peut exprimer le passage de la technique ancienne (productive) à la technique moderne (provocatrice) comme la substitution de la causalité poétique et ouverte sur l’essence des choses par la causalité scientifique telle qu’on l’entend aujourd’hui, très stricte et limitée aux relations de cause à effet entre les phénomènes, sans dimension métaphysique. La nature est ainsi dépoétisée, puisque l’émerveillement que suscite la causalité poétique a laissé place à la volonté de domination de la nature menée par la causalité scientifique, dans le but d’exploiter son potentiel énergétique. [Ici « poétique » doit être entendu non pas au sens romantique, mais tout simplement étymologique, car « poïèsis » veut dire en grec toute « production » ou toute « œuvre » qui conduit le non-être à être.]

Heidegger prend deux exemples illustrant ce passage de la production à la provocation :

  • Dans la culture artisanale, on prend soin des champs, on laisse la nature produire d’elle-même les denrées et l’énergie (à l’image du moulin à vent, dont les ailes sont livrées au vent et qui n’accumule pas d’énergie). Au contraire, la culture industrialisée est régie par la volonté d’extraire des ressources à la nature et de les stocker.

  • Autre exemple : une centrale hydraulique au bord du Rhin. Heidegger explique qu’à cause de la centrale, aujourd’hui, le Rhin est réduit à un fournisseur de puissance hydraulique. Ainsi, on ne prête plus attention au fleuve en tant que fleuve, mais en tant qu’objet de commande susceptible de fournir de l’énergie : l’essence du Rhin dépend désormais de celle de la centrale.

Qui provoque ainsi la nature ? L’homme. Mais l’homme est lui même provoqué à libérer les énergies naturelles… Qu’est-ce que cela signifie ? Que l’homme ne provoque pas spontanément la nature : il répond à un appel qui le conduit à dominer la nature. Cet appel, Heidegger le nomme l’Arraisonnement. Ainsi, l’Arraisonnement (das Gestell, en allemand, que l’on peut aussi traduire plus littéralement comme mise à disposition ou Dispositif) est cet appel qui contraint l’homme à provoquer la nature.

L’Arraisonnement explique la naissance de la science moderne, qui vise à réduire la nature à un complexe calculable. Heidegger est bien conscient de l’objection suivante : pourquoi la technique moderne (née avec l’industrialisation dès la fin du XVIIIe siècle) est-elle apparue deux siècles après la science moderne [(XVIIe siècle, avec Galilée)] ? La réponse tient en ce que la mathématisation de la nature a préparé le chemin vers la technique moderne : si celle-ci est apparue tardivement, son essence était déjà ancrée dans la physique du XVIIe siècle.

L’essence de la technique moderne est précisément l’Arraisonnement, cet appel qui exhorte l’homme à utiliser la science comme outil de domination de la nature, et non plus le dévoilement, qui conduisait l’artisan à rassembler les quatre causes d’Aristote pour faire passer des choses du non-être à l’être.

Attention, il y a là un contresens à éviter : ce n’est pas parce que l’Arraisonnement conduit l’homme à exploiter la nature au moyen de la science que la technique moderne est une fatalité, un mal qu’on ne peut arrêter. Au contraire : puisque le dévoilement est un acte libre, et que l’Arraisonnement est – même s’il s’en distingue – un mode extrême du dévoilement, l’Arraisonnement est donc un appel libérateur qui se fait l’écho du dévoilement originel. Autrement dit, la prise de conscience que l’Arraisonnement constitue l’essence de la technique moderne nous ramène au souvenir du dévoilement, vers lequel l’homme doit revenir.

La technique moderne n’est donc, pour Heidegger, ni dangereuse ni démoniaque ; en revanche l’essence de la technique moderne, l’Arraisonnement, bien qu’étant un appel libérateur, est aussi le lieu d’un grand péril. Ce danger est que l’Arraisonnement devienne tout-puissant, et que l’homme n’ait ainsi plus la possibilité de revenir à un dévoilement plus originel, dès lors occulté par la domination absolue de l’Arraisonnement.

Heidegger se met alors à l’écoute du poète Hölderlin : « Mais là où il y a danger, là aussi croît ce qui sauve. ». Ainsi, si l’on en croit Hölderlin, l’Arraisonnement contiendrait dans son essence même « ce qui sauve ». Ici sauver signifie : revenir au dévoilement, retrouver l’être des choses que la science et la technique modernes ont oublié, alors que le propre de l’homme est d’avoir la faculté d’accéder à l’être des choses grâce au dévoilement.

Pour nous sauver, il faut donc nous concentrer sur ce qu’il y a d’essentiel dans la technique et ne pas rester obnubilé par les choses techniques ; le problème aujourd’hui est que l’homme ne se concentre plus sur son être, mais sur son savoir-faire. Ce qui lui importe est de tester sur les choses sa puissance dominatrice (qu’il exerce au moyen de la science et de la technique) au lieu de se pencher sur l’être des choses. Il faut donc cesser de se représenter la technique comme un instrument, car sinon on reste enfermé dans la volonté de maîtriser la nature, qui a trait à l’Arraisonnement et non au dévoilement.

Or, c’est par le questionnement, l’interrogation dans la pensée que les chemins menant vers « ce qui sauve » commencent à s’éclairer.

[Remarque non présente dans le texte, en guise de résumé-conclusion : la technique en soi n’est pas une menace. Ce qui constitue un danger, c’est la technique lorsqu’elle est mise au service de l’exploitation et de la domination de la nature au moyen de la science moderne - une domination de la nature qui intègre également une domination de l’être humain (l’exploitation de l’homme, sa réduction à un stock, c’est-à-dire : une ressource humaine, que l’on se place dans une optique totalitaire (les camps) ou scientifique (la génétique et l’exploitation du génome). Mais l’homme a toujours la possibilité de se sauver s’il se met à l’écoute de l’appel salvateur qui doit le reconduire dans l’essence de la technique au sens de dévoilement. Ainsi, de façon anachronique, Heidegger aurait probablement soutenu qu’il faut s’émerveiller de la découverte du boson de Higgs, où la technique nous rapproche de l’être des choses, et non des nouvelles fonctionnalités de votre nouveau smartphone préféré qui, si éblouissantes soient-elles, ne relèvent que d’un pur savoir-faire !]

Résumé de La question de la technique de Martin Heidegger, publiée dans Essais et conférences (1954)

Science et méditation


heidegger

Le texte suivant retrace le cheminement des idées essentielles de la conférence « Science et méditation » de Martin Heidegger, puisée dans « Essais et conférences ».

Habituellement, on nomme « culture » le domaine où se déroule l’activité spirituelle et créatrice de l’homme, et dont la science fait partie. Mais tant qu’on considère la science en ce sens culturel, son être véritable (son essence) nous échappe : la science n’est pas qu’une activité culturelle, c’est un lieu où le réel offre à l’homme sa splendeur cachée. Or aujourd’hui, la science n’est plus perçue comme une activité désintéressée tournée vers la beauté du réel ou sa vérité, mais comme un outil de domination de la nature, de plus en plus performant. Pour comprendre tout ce qui suit, gardez bien en tête cette distinction entre science contemplative et science dominatrice.

La science contemporaine, qui s’insinue dans tous les domaines de la vie moderne (industrie, économie, politique…), se caractérise comme étant une théorie du réel. Pour comprendre ce que cela signifie et en quoi cette expression se rapporte à la domination de la nature, il faut se pencher sur les mots « théorie » et « réel ».

Qu’entend-on par « réel » ? Pour Heidegger, le réel n’est pas seulement l’ensemble des objets présents devant nous. Le réel est aussi ce qui permet aux objets d’exister, ce qui les fait passer du non-visible au visible. Ainsi, le réel est à la fois ce qui est présent, et ce qui permet à ce qui n’existe pas d’entrer dans l’existence, de devenir présent. Mais aujourd’hui, on oublie cette deuxième dimension démiurgique du réel : on ne s’intéresse plus qu’aux choses en tant que simples objets, et on a oublié ce qui fait qu’elles existent, leur être. Ainsi, à nos yeux d’homme moderne, le réel a perdu de sa teneur.

Venons-en au mot « théorie » : si on se penche sur son étymologie, on peut lui trouver deux sens, qui ne seront pas sans rappeler les deux aspects du réel mentionnés ci-dessus.

D’abord, on peut comprendre « théorie » comme venant des mots grecs théa, qui signifie l’aspect, l’apparence (qui a donné théâtre, par exemple), et oraô, qui signifie voir. L’ensemble donne : regarder l’aspect sous lequel apparaît la chose présente, c’est-à-dire considérer la chose présente en tant que simple objet.

Mais on peut aussi décomposer « théorie » en theà : la déesse, qu’Heidegger assimile à la vérité (comprise comme le surgissement dans la réalité de ce qui était caché), et ôra : le respect, la considération qu’on a pour quelque chose. Le mot théorie peut donc être aussi interprété comme l’attention respectueuse que l’on porte à la présence des choses.

Comment faut-il dès lors comprendre le mot « théorie » dans l’expression « théorie du réel » ? Certainement pas comme la theoria grecque, dans le sens d’une contemplation de la chose présente. Au contraire, la science moderne - entendue comme théorie - a vocation à dominer le réel, en le rendant prévisible. Le réel est poursuivi, dominé du regard ; il est réduit à des collections d’objets qu’on peut maîtriser. Pour ce faire, tout nouveau phénomène dans n’importe quel domaine des sciences est à travailler jusqu’à ce qu’il s’intègre dans un cadre théorique, pour qu’il devienne calculable. Ici, calcul est entendu au sens large, pas seulement restreint aux chiffres : calculer signifie considérer un phénomène et parvenir à l’expliquer rationnellement par une théorie, pour pouvoir le contrôler. Une phrase de Max Planck résume bien la réduction du réel opérée par la science actuelle : « Est réel ce qu’on peut mesurer ».

Heidegger prend alors l’exemple de la physique. Celle-ci considère la nature comme privée de vie : la physique classique permet de calculer le mouvement des objets, et la physique quantique ne s’assure que de connexions statistiques entre les objets. Et même si cette physique atomique repose sur des concepts radicalement nouveaux, elle demeure une théorie. Pourquoi ? Parce que, classique ou quantique, la physique moderne vise toujours à dominer le réel, à « pouvoir écrire une équation fondamentale de laquelle découle les propriétés de toutes les particules élémentaires et par là le comportement de la matière en général » (Werner Heisenberg [que Heidegger a connu et fréquenté]).

Ainsi, dans le passage de la physique classique à la physique contemporaine, ce qui ne change pas, c’est le fait que la théorie est toujours élaborée dans une optique de domination de la nature.

Pour condenser tout ce qui a été dit sur la science moderne, Heidegger nomme l’être (l’essence) de la science moderne : l’Incontournable. Que faut-il comprendre ?

Que pour la physique, la nature demeure l’Incontournable dans deux acceptions :

  • Incontournable dans la mesure où la physique ne peut se passer de la nature (puisque c’est son objet d’étude !)

  • Incontournable dans le sens où la science ne sera jamais en mesure de saisir l’être de la nature, parce que celle-ci ne se présente que sous forme d’objet. Autrement dit, la science ne traite la nature que comme un ensemble d’objets, et de ce fait ne sera jamais capable d’embrasser le réel dans sa totalité (qui, comme nous l’avons dit, comprend les objets, mais aussi ce qui les fait être en tant qu’objet).

Il s’agit là d’une limitation bien plus profonde de la science moderne, bien plus spirituelle que l’incertitude liée aux fondements de la science : en effet, le propos d’Heidegger n’est pas de dire que la science est limitée parce qu’elle repose sur un socle fait de postulats, de principes qui par définition ne peuvent pas être justifiés par une démonstration. Pour Heidegger, la science est limitée dans le sens où elle n’a affaire qu’à des objets qui ne sont qu’une apparence, une manière qu’a la nature de se présenter à nous. La science moderne touche aux objets, mais pas à ce qu’il y a « derrière » les objets, leur essence. Ainsi, par exemple, la science ne pourra jamais expliquer comment une chose passe de la non-existence à l’existence.

[Remarque non présente dans le texte : il ne faut pas voir ici une critique d’Heidegger envers la science ; pour Heidegger il faut être conscient de cette limitation intrinsèque de la science pour ne pas attendre d’elle des réponses qu’elle n’est pas en mesure d’apporter (par exemple, sur la nature du temps, voir à ce propos la conférence dans la section « Temps physique », minutage 5:36). C’est le sens de la phrase : « La science ne pense pas », non pas qu’elle y mette de la mauvaise volonté, mais qu’elle en est foncièrement incapable].

La fin de la conférence d’Heidegger est une exhorte à la méditation [non pas évidemment au sens bouddhiste, mais au sens d’une pensée qui commence à comprendre qu’elle n’a jamais assez pensé ce qu’elle a à penser], seul moyen selon lui de renouer avec l’être des choses que la science moderne a oublié. Mais cet état de méditation n’est pas immédiat : il ne suffit pas de prendre conscience de la situation pour en arriver à la méditation dont l’humanité aujourd’hui a besoin. Il faut pour cela s’abandonner vers « ce qui mérite qu’on interroge », cet appel spirituel qui nous ouvre les portes de l’Être…

Cette fin peut vous paraître surprenante, mais il faut bien garder à l’esprit que la philosophie d’Heidegger (du moins dans sa deuxième période) est une philosophie méditative, qui a moins vocation à fournir des réponses tranchées qu’à ouvrir de nouveaux champs de réflexion.

Résumé de Science et méditation de Martin Heidegger, publiée dans Essais et conférences (1954)

parues en 1954 dans l’ouvrage « Essais et conférences », qui s’intéressent respectivement à nos rapports avec la technique moderne et avec la science moderne.

Résumer Heidegger est une entreprise délicate, si tant est qu’elle soit seulement possible. Il a fallu simplifier certains cheminements de pensée et parfois mettre de côté des notions complexes de cette philosophie (comme celles de liberté, de vérité ou de Dasein). Cependant ces résumés vous donneront un aperçu de ces deux conférences, ainsi que des clés qui vous permettront d’aborder le texte d’Heidegger dès lors beaucoup plus accessible.

Remercions ici très chaleureusement Philippe Arjakovsky, professeur de philosophie, pour sa précieuse relecture des deux textes qui vous sont proposés. Il est co-directeur avec F. Fédier et H. France-Lanord du Dictionnaire Heidegger paru aux éditions du Cerf.

Share Button